IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v239y2016i2d10.1007_s10479-014-1626-2.html
   My bibliography  Save this article

Multi-server queueing system with a generalized phase-type service time distribution as a model of call center with a call-back option

Author

Listed:
  • Alexander Dudin

    (Belarusian State University)

  • Chesoong Kim

    (Sangji University)

  • Olga Dudina

    (Belarusian State University)

  • Sergey Dudin

    (Belarusian State University)

Abstract

A multi-server queueing system with a Markovian arrival process and finite and infinite buffers to model a call center with a call-back option is investigated. If all servers are busy during the customer arrival epoch, the customer may leave the system forever or move to the buffer (such a customer is referred to as a real customer), or, alternatively, request for call-back (such a customer is referred to as a virtual customer). During a waiting period, a real customer can be impatient and may leave the system without service or request for call-back (becomes a virtual customer). The service time of a customer and the dial time to a virtual customer for a server have a phase-type distribution. To simplify the investigation of the system we introduce the notion of a generalized phase-type service time distribution. We determine the stationary distribution of the system states and derive the Laplace–Stieltjes transforms of the sojourn and waiting time distributions for real and virtual customers. Some key performance measures are calculated and numerical results are presented.

Suggested Citation

  • Alexander Dudin & Chesoong Kim & Olga Dudina & Sergey Dudin, 2016. "Multi-server queueing system with a generalized phase-type service time distribution as a model of call center with a call-back option," Annals of Operations Research, Springer, vol. 239(2), pages 401-428, April.
  • Handle: RePEc:spr:annopr:v:239:y:2016:i:2:d:10.1007_s10479-014-1626-2
    DOI: 10.1007/s10479-014-1626-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-014-1626-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-014-1626-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ger Koole & Avishai Mandelbaum, 2002. "Queueing Models of Call Centers: An Introduction," Annals of Operations Research, Springer, vol. 113(1), pages 41-59, July.
    2. Mor Armony & Constantinos Maglaras, 2004. "On Customer Contact Centers with a Call-Back Option: Customer Decisions, Routing Rules, and System Design," Operations Research, INFORMS, vol. 52(2), pages 271-292, April.
    3. Mor Armony & Constantinos Maglaras, 2004. "Contact Centers with a Call-Back Option and Real-Time Delay Information," Operations Research, INFORMS, vol. 52(4), pages 527-545, August.
    4. Che Kim & Vilena Mushko & Alexander Dudin, 2012. "Computation of the steady state distribution for multi-server retrial queues with phase type service process," Annals of Operations Research, Springer, vol. 201(1), pages 307-323, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Peng, 2017. "On the MAP/PH/c retrial queueing system with two types of nonpersistent calls," OPSEARCH, Springer;Operational Research Society of India, vol. 54(3), pages 537-557, September.
    2. A. N. Dudin & S. A. Dudin & O. S. Dudina, 2023. "Randomized Threshold Strategy for Providing Flexible Priority in Multi-Server Queueing System with a Marked Markov Arrival Process and Phase-Type Distribution of Service Time," Mathematics, MDPI, vol. 11(12), pages 1-23, June.
    3. Sally McClean, 2021. "Using Markov Models to Characterize and Predict Process Target Compliance," Mathematics, MDPI, vol. 9(11), pages 1-12, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Legros & Sihan Ding & Rob Mei & Oualid Jouini, 2017. "Call centers with a postponed callback offer," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1097-1125, October.
    2. J. G. Dai & Tolga Tezcan, 2011. "State Space Collapse in Many-Server Diffusion Limits of Parallel Server Systems," Mathematics of Operations Research, INFORMS, vol. 36(2), pages 271-320, May.
    3. Roei Engel & Refael Hassin, 2017. "Customer equilibrium in a single-server system with virtual and system queues," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 161-180, October.
    4. Avishai Mandelbaum & Petar Momčilović, 2008. "Queues with Many Servers: The Virtual Waiting-Time Process in the QED Regime," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 561-586, August.
    5. Sandjai Bhulai & Taoying Farenhorst-Yuan & Bernd Heidergott & Dinard Laan, 2012. "Optimal balanced control for call centers," Annals of Operations Research, Springer, vol. 201(1), pages 39-62, December.
    6. Guo, Pengfei & Zipkin, Paul, 2009. "The effects of the availability of waiting-time information on a balking queue," European Journal of Operational Research, Elsevier, vol. 198(1), pages 199-209, October.
    7. Mor Armony & Efrat Perel & Nir Perel & Uri Yechiali, 2019. "Exact analysis for multiserver queueing systems with cross selling," Annals of Operations Research, Springer, vol. 274(1), pages 75-100, March.
    8. Trigeorgis, Lenos & Tsekrekos, Andrianos E., 2018. "Real Options in Operations Research: A Review," European Journal of Operational Research, Elsevier, vol. 270(1), pages 1-24.
    9. Tolga Tezcan, 2008. "Optimal Control of Distributed Parallel Server Systems Under the Halfin and Whitt Regime," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 51-90, February.
    10. Lu, Yuwei & Xie, Xiaolan & Jiang, Zhibin, 2018. "Dynamic appointment scheduling with wait-dependent abandonment," European Journal of Operational Research, Elsevier, vol. 265(3), pages 975-984.
    11. Ni, Guanqun & Xu, Yinfeng & Dong, Yucheng, 2013. "Price and speed decisions in customer-intensive services with two classes of customers," European Journal of Operational Research, Elsevier, vol. 228(2), pages 427-436.
    12. Itay Gurvich & Ward Whitt, 2009. "Queue-and-Idleness-Ratio Controls in Many-Server Service Systems," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 363-396, May.
    13. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    14. Rouba Ibrahim & Mor Armony & Achal Bassamboo, 2017. "Does the Past Predict the Future? The Case of Delay Announcements in Service Systems," Management Science, INFORMS, vol. 63(6), pages 1762-1780, June.
    15. Dongyuan Zhan & Amy R. Ward, 2019. "Staffing, Routing, and Payment to Trade off Speed and Quality in Large Service Systems," Operations Research, INFORMS, vol. 67(6), pages 1738-1751, November.
    16. Rouba Ibrahim & Ward Whitt, 2011. "Wait-Time Predictors for Customer Service Systems with Time-Varying Demand and Capacity," Operations Research, INFORMS, vol. 59(5), pages 1106-1118, October.
    17. Tkachenko Andrey, 2013. "Multichannel queuing systems with balking and regenerative input fl ow," HSE Working papers WP BRP 14/STI/2013, National Research University Higher School of Economics.
    18. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.
    19. K. R. Rejitha & K. P. Jose, 2018. "A stochastic inventory system with two modes of service and retrial of customers," OPSEARCH, Springer;Operational Research Society of India, vol. 55(1), pages 134-149, March.
    20. Mehmet Tolga Cezik & Pierre L'Ecuyer, 2008. "Staffing Multiskill Call Centers via Linear Programming and Simulation," Management Science, INFORMS, vol. 54(2), pages 310-323, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:239:y:2016:i:2:d:10.1007_s10479-014-1626-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.