IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v239y2016i1d10.1007_s10479-014-1674-7.html
   My bibliography  Save this article

An assessment of a days off decomposition approach to personnel shift scheduling

Author

Listed:
  • Sophie Veldhoven

    (Aviv)

  • Gerhard Post

    (University of Twente
    ORTEC)

  • Egbert Veen

    (University of Twente
    ORTEC)

  • Tim Curtois

    (University of Nottingham)

Abstract

This paper studies a two-phase decomposition approach to solving the personnel scheduling problem. The first phase creates a days-off-schedule, indicating working days and days off for each employee. The second phase assigns shifts to the working days in the days-off-schedule. This decomposition is motivated by the fact that personnel scheduling constraints are often divided into two categories: one specifies constraints on working days and days off, while the other specifies constraints on shift assignments. To assess the consequences of the decomposition approach, we apply it to public benchmark instances, and compare this to solving the personnel scheduling problem directly. In all steps we use mathematical programming. We also study the extension that includes night shifts in the first phase of the decomposition. We present a detailed results analysis, and analyze the effect of various instance parameters on the decompositions’ results. In general, we observe that the decompositions significantly reduce the computation time, but the quality, though often good, depends strongly on the instance at hand. Our analysis identifies which aspects in the instance can jeopardize the quality.

Suggested Citation

  • Sophie Veldhoven & Gerhard Post & Egbert Veen & Tim Curtois, 2016. "An assessment of a days off decomposition approach to personnel shift scheduling," Annals of Operations Research, Springer, vol. 239(1), pages 207-223, April.
  • Handle: RePEc:spr:annopr:v:239:y:2016:i:1:d:10.1007_s10479-014-1674-7
    DOI: 10.1007/s10479-014-1674-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-014-1674-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-014-1674-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burke, Edmund K. & Curtois, Tim, 2014. "New approaches to nurse rostering benchmark instances," European Journal of Operational Research, Elsevier, vol. 237(1), pages 71-81.
    2. Cheang, B. & Li, H. & Lim, A. & Rodrigues, B., 2003. "Nurse rostering problems--a bibliographic survey," European Journal of Operational Research, Elsevier, vol. 151(3), pages 447-460, December.
    3. A.T. Ernst & H. Jiang & M. Krishnamoorthy & B. Owens & D. Sier, 2004. "An Annotated Bibliography of Personnel Scheduling and Rostering," Annals of Operations Research, Springer, vol. 127(1), pages 21-144, March.
    4. D. Parr & J. Thompson, 2007. "Solving the multi-objective nurse scheduling problem with a weighted cost function," Annals of Operations Research, Springer, vol. 155(1), pages 279-288, November.
    5. Glass, Celia A. & Knight, Roger A., 2010. "The nurse rostering problem: A critical appraisal of the problem structure," European Journal of Operational Research, Elsevier, vol. 202(2), pages 379-389, April.
    6. Millar, Harvey H. & Kiragu, Mona, 1998. "Cyclic and non-cyclic scheduling of 12 h shift nurses by network programming," European Journal of Operational Research, Elsevier, vol. 104(3), pages 582-592, February.
    7. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    8. B. Maenhout & M. Vanhoucke, 2008. "Branching Strategies in a Branch-and-Price Approach for a Multiple Objective Nurse Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/495, Ghent University, Faculty of Economics and Business Administration.
    9. repec:spr:pharme:v:21:y:2003:i:12:p:839-851 is not listed on IDEAS
    10. Paul R. Day & David M. Ryan, 1997. "Flight Attendant Rostering for Short-Haul Airline Operations," Operations Research, INFORMS, vol. 45(5), pages 649-661, October.
    11. Valouxis, Christos & Gogos, Christos & Goulas, George & Alefragis, Panayiotis & Housos, Efthymios, 2012. "A systematic two phase approach for the nurse rostering problem," European Journal of Operational Research, Elsevier, vol. 219(2), pages 425-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Shuling & Hall, Nicholas G., 2021. "Fatigue, personnel scheduling and operations: Review and research opportunities," European Journal of Operational Research, Elsevier, vol. 295(3), pages 807-822.
    2. Emir Hüseyin Özder & Evrencan Özcan & Tamer Eren, 2019. "Staff Task-Based Shift Scheduling Solution with an ANP and Goal Programming Method in a Natural Gas Combined Cycle Power Plant," Mathematics, MDPI, vol. 7(2), pages 1-26, February.
    3. Oyku Ahipasaoglu & Nesim Erkip & Oya Ekin Karasan, 2019. "The venue management problem: setting staffing levels, shifts and shift schedules at concession stands," Journal of Scheduling, Springer, vol. 22(1), pages 69-83, February.
    4. Wang, Wenshu & Xie, Kexin & Guo, Siqi & Li, Weixing & Xiao, Fan & Liang, Zhe, 2023. "A shift-based model to solve the integrated staff rostering and task assignment problem with real-world requirements," European Journal of Operational Research, Elsevier, vol. 310(1), pages 360-378.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolbeck, Lena Antonia, 2019. "Fairness aspects in personnel scheduling," Discussion Papers 2019/16, Free University Berlin, School of Business & Economics.
    2. Suk Ho Jin & Ho Yeong Yun & Suk Jae Jeong & Kyung Sup Kim, 2017. "Hybrid and Cooperative Strategies Using Harmony Search and Artificial Immune Systems for Solving the Nurse Rostering Problem," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    3. Paola Cappanera & Filippo Visintin & Roberta Rossi, 2022. "The emergency department physician rostering problem: obtaining equitable solutions via network optimization," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 916-959, December.
    4. Florian Mischek & Nysret Musliu, 2019. "Integer programming model extensions for a multi-stage nurse rostering problem," Annals of Operations Research, Springer, vol. 275(1), pages 123-143, April.
    5. Frederik Knust & Lin Xie, 2019. "Simulated annealing approach to nurse rostering benchmark and real-world instances," Annals of Operations Research, Springer, vol. 272(1), pages 187-216, January.
    6. Ağralı, Semra & Taşkın, Z. Caner & Ünal, A. Tamer, 2017. "Employee scheduling in service industries with flexible employee availability and demand," Omega, Elsevier, vol. 66(PA), pages 159-169.
    7. Elín Björk Böðvarsdóttir & Niels-Christian Fink Bagger & Laura Elise Høffner & Thomas J. R. Stidsen, 2022. "A flexible mixed integer programming-based system for real-world nurse rostering," Journal of Scheduling, Springer, vol. 25(1), pages 59-88, February.
    8. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    9. Caballini, Claudia & Paolucci, Massimo, 2020. "A rostering approach to minimize health risks for workers: An application to a container terminal in the Italian port of Genoa," Omega, Elsevier, vol. 95(C).
    10. Valouxis, Christos & Gogos, Christos & Goulas, George & Alefragis, Panayiotis & Housos, Efthymios, 2012. "A systematic two phase approach for the nurse rostering problem," European Journal of Operational Research, Elsevier, vol. 219(2), pages 425-433.
    11. Vanhoucke, Mario & Maenhout, Broos, 2009. "On the characterization and generation of nurse scheduling problem instances," European Journal of Operational Research, Elsevier, vol. 196(2), pages 457-467, July.
    12. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    13. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    14. Damcı-Kurt, Pelin & Zhang, Minjiao & Marentay, Brian & Govind, Nirmal, 2019. "Improving physician schedules by leveraging equalization: Cases from hospitals in U.S," Omega, Elsevier, vol. 85(C), pages 182-193.
    15. Rajeswari Muniyan & Rajakumar Ramalingam & Sultan S. Alshamrani & Durgaprasad Gangodkar & Ankur Dumka & Rajesh Singh & Anita Gehlot & Mamoon Rashid, 2022. "Artificial Bee Colony Algorithm with Nelder–Mead Method to Solve Nurse Scheduling Problem," Mathematics, MDPI, vol. 10(15), pages 1-24, July.
    16. Erhard, Melanie & Schoenfelder, Jan & Fügener, Andreas & Brunner, Jens O., 2018. "State of the art in physician scheduling," European Journal of Operational Research, Elsevier, vol. 265(1), pages 1-18.
    17. Ran Liu & Xiaolan Xie, 2018. "Physician Staffing for Emergency Departments with Time-Varying Demand," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 588-607, August.
    18. David D. Cho & Kurt M. Bretthauer & Jan Schoenfelder, 2023. "Patient-to-nurse ratios: Balancing quality, nurse turnover, and cost," Health Care Management Science, Springer, vol. 26(4), pages 807-826, December.
    19. Tristan Becker & Maximilian Schiffer & Grit Walther, 2022. "A General Branch-and-Cut Framework for Rotating Workforce Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1548-1564, May.
    20. Dohn, Anders & Mason, Andrew, 2013. "Branch-and-price for staff rostering: An efficient implementation using generic programming and nested column generation," European Journal of Operational Research, Elsevier, vol. 230(1), pages 157-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:239:y:2016:i:1:d:10.1007_s10479-014-1674-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.