IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v206y2013i1p585-59210.1007-s10479-013-1365-9.html
   My bibliography  Save this article

Further study of production possibility set and performance evaluation model in supply chain DEA

Author

Listed:
  • Zhongbao Zhou
  • Mei Wang
  • Hui Ding
  • Chaoqun Ma
  • Wenbin Liu

Abstract

Performance evaluation is an importance issue in supply chain management. Yang et al. (Ann. Oper. Res. 38(6):195–211, 2011 ) defined two types of supply chain production possibility sets and proved the equivalence between them. Based on the sub-perfect CRS production possibility set, they proposed a supply chain DEA model to appraise the overall technical efficiency of supply chains. The relationship among efficiency scores of the proposed model, CCR models of system and subsystems are discussed. However, we find that the equivalence between the two types of supply chain production possibility sets is not correct. The proofs of their three theorems are all problematic. In this paper, we correct some results and give three new proofs. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Zhongbao Zhou & Mei Wang & Hui Ding & Chaoqun Ma & Wenbin Liu, 2013. "Further study of production possibility set and performance evaluation model in supply chain DEA," Annals of Operations Research, Springer, vol. 206(1), pages 585-592, July.
  • Handle: RePEc:spr:annopr:v:206:y:2013:i:1:p:585-592:10.1007/s10479-013-1365-9
    DOI: 10.1007/s10479-013-1365-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-013-1365-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-013-1365-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Biehl & Wade Cook & David Johnston, 2006. "The efficiency of joint decision making in buyer-supplier relationships," Annals of Operations Research, Springer, vol. 145(1), pages 15-34, July.
    2. Chen, Ci & Yan, Hong, 2011. "Network DEA model for supply chain performance evaluation," European Journal of Operational Research, Elsevier, vol. 213(1), pages 147-155, August.
    3. Feng Yang & Dexiang Wu & Liang Liang & Gongbing Bi & Desheng Wu, 2011. "Supply chain DEA: production possibility set and performance evaluation model," Annals of Operations Research, Springer, vol. 185(1), pages 195-211, May.
    4. Zhu, Joe, 2004. "A buyer-seller game model for selection and negotiation of purchasing bids: Extensions and new models," European Journal of Operational Research, Elsevier, vol. 154(1), pages 150-156, April.
    5. Edgar Alfonso & Dusko Kalenatic & Cesar López, 2010. "Modeling the synergy level in a vertical collaborative supply chain through the IMP interaction model and DEA framework," Annals of Operations Research, Springer, vol. 181(1), pages 813-827, December.
    6. Yao Chen & Liang Liang & Feng Yang, 2006. "A DEA game model approach to supply chain efficiency," Annals of Operations Research, Springer, vol. 145(1), pages 5-13, July.
    7. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoud Rabbani & Reza Yazdanparast & Mahdi Mobini, 2019. "An algorithm for performance evaluation of resilience engineering culture based on graph theory and matrix approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 228-241, April.
    2. Sebastian Lozano & Belarmino Adenso-Diaz, 2018. "Network DEA-based biobjective optimization of product flows in a supply chain," Annals of Operations Research, Springer, vol. 264(1), pages 307-323, May.
    3. Liu, Wenbin & Zhou, Zhongbao & Liu, Debin & Xiao, Helu, 2015. "Estimation of portfolio efficiency via DEA," Omega, Elsevier, vol. 52(C), pages 107-118.
    4. Xiyang Lei & Yongjun Li & Qiwei Xie & Liang Liang, 2015. "Measuring Olympics achievements based on a parallel DEA approach," Annals of Operations Research, Springer, vol. 226(1), pages 379-396, March.
    5. Sinem Buyuksaatci Kiris & Enes Eryarsoy & Selim Zaim & Dursun Delen, 2023. "An integrated approach for lean production using simulation and data envelopment analysis," Annals of Operations Research, Springer, vol. 320(2), pages 863-886, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    2. Ching-Chin Chern & Tzi-Yuan Chou & Bo Hsiao, 2016. "Assessing the efficiency of supply chain scheduling algorithms using data envelopment analysis," Information Systems and e-Business Management, Springer, vol. 14(4), pages 823-856, November.
    3. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    4. Despotis, Dimitris K. & Koronakos, Gregory & Sotiros, Dimitris, 2016. "The “weak-link” approach to network DEA for two-stage processes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 481-492.
    5. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    6. Sebastian Lozano & Belarmino Adenso-Diaz, 2018. "Network DEA-based biobjective optimization of product flows in a supply chain," Annals of Operations Research, Springer, vol. 264(1), pages 307-323, May.
    7. Somayeh Soheilirad & Kannan Govindan & Abbas Mardani & Edmundas Kazimieras Zavadskas & Mehrbakhsh Nilashi & Norhayati Zakuan, 2018. "Application of data envelopment analysis models in supply chain management: a systematic review and meta-analysis," Annals of Operations Research, Springer, vol. 271(2), pages 915-969, December.
    8. Milan Andrejić, 2023. "Modeling Retail Supply Chain Efficiency: Exploration and Comparative Analysis of Different Approaches," Mathematics, MDPI, vol. 11(7), pages 1-24, March.
    9. Lozano, Sebastián, 2016. "Slacks-based inefficiency approach for general networks with bad outputs: An application to the banking sector," Omega, Elsevier, vol. 60(C), pages 73-84.
    10. Chunguang Bai & Joseph Sarkis, 2016. "Supplier development investment strategies: a game theoretic evaluation," Annals of Operations Research, Springer, vol. 240(2), pages 583-615, May.
    11. An, Qingxian & Yan, Hong & Wu, Jie & Liang, Liang, 2016. "Internal resource waste and centralization degree in two-stage systems: An efficiency analysis," Omega, Elsevier, vol. 61(C), pages 89-99.
    12. Herrera-Restrepo, Oscar & Triantis, Konstantinos, 2019. "Enterprise design through complex adaptive systems and efficiency measurement," European Journal of Operational Research, Elsevier, vol. 278(2), pages 481-497.
    13. Mahdiloo, Mahdi & Toloo, Mehdi & Duong, Thach-Thao & Farzipoor Saen, Reza & Tatham, Peter, 2018. "Integrated data envelopment analysis: Linear vs. nonlinear model," European Journal of Operational Research, Elsevier, vol. 268(1), pages 255-267.
    14. Konstantinos Petridis & Prasanta Kumar Dey & Ali Emrouznejad, 2017. "A branch and efficiency algorithm for the optimal design of supply chain networks," Annals of Operations Research, Springer, vol. 253(1), pages 545-571, June.
    15. Fang, Lei, 2020. "Stage efficiency evaluation in a two-stage network data envelopment analysis model with weight priority," Omega, Elsevier, vol. 97(C).
    16. Tajbakhsh, Alireza & Hassini, Elkafi, 2018. "Evaluating sustainability performance in fossil-fuel power plants using a two-stage data envelopment analysis," Energy Economics, Elsevier, vol. 74(C), pages 154-178.
    17. Mohammad Amirkhan & Hosein Didehkhani & Kaveh Khalili-Damghani & Ashkan Hafezalkotob, 2018. "Measuring Performance of a Three-Stage Network Structure Using Data Envelopment Analysis and Nash Bargaining Game: A Supply Chain Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1429-1467, September.
    18. Jie Wu & Beibei Xiong & Qingxian An & Jiasen Sun & Huaqing Wu, 2017. "Total-factor energy efficiency evaluation of Chinese industry by using two-stage DEA model with shared inputs," Annals of Operations Research, Springer, vol. 255(1), pages 257-276, August.
    19. Li, Xiang, 2017. "A fair evaluation of certain stage in a two-stage structure: revisiting the typical two-stage DEA approaches," Omega, Elsevier, vol. 68(C), pages 155-167.
    20. Monireh Jahani Sayyad Noveiri & Sohrab Kordrostami & Alireza Amirteimoori, 2022. "Performance analysis of sustainable supply networks with bounded, discrete, and joint factors," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 238-270, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:206:y:2013:i:1:p:585-592:10.1007/s10479-013-1365-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.