IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v186y2011i1p429-44210.1007-s10479-010-0733-y.html
   My bibliography  Save this article

Predetermined intervals for start times of activities in the stochastic project scheduling problem

Author

Listed:
  • Illana Bendavid
  • Boaz Golany

Abstract

This paper proposes a new methodology to schedule activities in projects with stochastic activity durations. The main idea is to determine for each activity an interval in which the activity is allowed to start its processing. Deviations from these intervals result in penalty costs. We employ the Cross-Entropy methodology to set the intervals so as to minimize the sum of the expected penalty costs. The paper describes the implementation of the method, compares its results to other heuristic methods and provides some insights towards actual applications. Copyright Springer Science+Business Media, LLC 2011

Suggested Citation

  • Illana Bendavid & Boaz Golany, 2011. "Predetermined intervals for start times of activities in the stochastic project scheduling problem," Annals of Operations Research, Springer, vol. 186(1), pages 429-442, June.
  • Handle: RePEc:spr:annopr:v:186:y:2011:i:1:p:429-442:10.1007/s10479-010-0733-y
    DOI: 10.1007/s10479-010-0733-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-010-0733-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-010-0733-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Alon & D. Kroese & T. Raviv & R. Rubinstein, 2005. "Application of the Cross-Entropy Method to the Buffer Allocation Problem in a Simulation-Based Environment," Annals of Operations Research, Springer, vol. 134(1), pages 137-151, February.
    2. Rainer Kolisch & Arno Sprecher & Andreas Drexl, 1995. "Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems," Management Science, INFORMS, vol. 41(10), pages 1693-1703, October.
    3. Herroelen, Willy & Leus, Roel, 2005. "Project scheduling under uncertainty: Survey and research potentials," European Journal of Operational Research, Elsevier, vol. 165(2), pages 289-306, September.
    4. Illana Bendavid & Boaz Golany, 2009. "Setting gates for activities in the stochastic project scheduling problem through the cross entropy methodology," Annals of Operations Research, Springer, vol. 172(1), pages 259-276, November.
    5. Elmaghraby, S. E. & Ferreira, A. A. & Tavares, L. V., 2000. "Optimal start times under stochastic activity durations," International Journal of Production Economics, Elsevier, vol. 64(1-3), pages 153-164, March.
    6. Yehuda Bassok & Ravi Anupindi, 2008. "Analysis of supply contracts with commitments and flexibility," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(5), pages 459-477, August.
    7. D. G. Malcolm & J. H. Roseboom & C. E. Clark & W. Fazar, 1959. "Application of a Technique for Research and Development Program Evaluation," Operations Research, INFORMS, vol. 7(5), pages 646-669, October.
    8. Aharon Ben-Tal & Boaz Golany & Arkadi Nemirovski & Jean-Philippe Vial, 2005. "Retailer-Supplier Flexible Commitments Contracts: A Robust Optimization Approach," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 248-271, February.
    9. Izack Cohen & Boaz Golany & Avraham Shtub, 2005. "Managing Stochastic, Finite Capacity, Multi-Project Systems through the Cross-Entropy Methodology," Annals of Operations Research, Springer, vol. 134(1), pages 183-199, February.
    10. Dirk P. Kroese & Sergey Porotsky & Reuven Y. Rubinstein, 2006. "The Cross-Entropy Method for Continuous Multi-Extremal Optimization," Methodology and Computing in Applied Probability, Springer, vol. 8(3), pages 383-407, September.
    11. Sobel, Matthew J. & Szmerekovsky, Joseph G. & Tilson, Vera, 2009. "Scheduling projects with stochastic activity duration to maximize expected net present value," European Journal of Operational Research, Elsevier, vol. 198(3), pages 697-705, November.
    12. Herroelen, Willy S. & Van Dommelen, Patrick & Demeulemeester, Erik L., 1997. "Project network models with discounted cash flows a guided tour through recent developments," European Journal of Operational Research, Elsevier, vol. 100(1), pages 97-121, July.
    13. Arnold H. Buss & Meir J. Rosenblatt, 1997. "Activity Delay in Stochastic Project Networks," Operations Research, INFORMS, vol. 45(1), pages 126-139, February.
    14. Elmaghraby, Salah E., 2001. "On the optimal release time of jobs with random processing times, with extensions to other criteria," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 103-113, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marlin W. Ulmer & Barrett W. Thomas, 2019. "Enough Waiting for the Cable Guy—Estimating Arrival Times for Service Vehicle Routing," Transportation Science, INFORMS, vol. 53(3), pages 897-916, May.
    2. Illana Bendavid & Yariv N. Marmor & Boris Shnits, 2018. "Developing an optimal appointment scheduling for systems with rigid standby time under pre-determined quality of service," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 54-77, June.
    3. Salim Rostami & Stefan Creemers & Roel Leus, 2018. "New strategies for stochastic resource-constrained project scheduling," Journal of Scheduling, Springer, vol. 21(3), pages 349-365, June.
    4. Junguang Zhang & Dan Wan, 2021. "Determination of early warning time window for bottleneck resource buffer," Annals of Operations Research, Springer, vol. 300(1), pages 289-305, May.
    5. Shnits, Boris & Bendavid, Illana & Marmor, Yariv N., 2020. "An appointment scheduling policy for healthcare systems with parallel servers and pre-determined quality of service," Omega, Elsevier, vol. 97(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Illana Bendavid & Boaz Golany, 2009. "Setting gates for activities in the stochastic project scheduling problem through the cross entropy methodology," Annals of Operations Research, Springer, vol. 172(1), pages 259-276, November.
    2. Illana Bendavid & Boaz Golany, 2011. "Setting gates for activities in the stochastic project scheduling problem through the cross entropy methodology," Annals of Operations Research, Springer, vol. 189(1), pages 25-42, September.
    3. Sobel, Matthew J. & Szmerekovsky, Joseph G. & Tilson, Vera, 2009. "Scheduling projects with stochastic activity duration to maximize expected net present value," European Journal of Operational Research, Elsevier, vol. 198(3), pages 697-705, November.
    4. Wiesemann, Wolfram & Kuhn, Daniel & Rustem, Berç, 2010. "Maximizing the net present value of a project under uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 356-367, April.
    5. Yangyang Liang & Nanfang Cui & Tian Wang & Erik Demeulemeester, 2019. "Robust resource-constrained max-NPV project scheduling with stochastic activity duration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 219-254, March.
    6. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    7. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    8. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    9. Hermans, Ben & Leus, Roel & Looy, Bart Van, 2023. "Deciding on scheduling, secrecy, and patenting during the new product development process: The relevance of project planning models," Omega, Elsevier, vol. 116(C).
    10. Alessio Angius & András Horváth & Marcello Urgo, 2021. "A Kronecker Algebra Formulation for Markov Activity Networks with Phase-Type Distributions," Mathematics, MDPI, vol. 9(12), pages 1-22, June.
    11. Trietsch, Dan & Mazmanyan, Lilit & Gevorgyan, Lilit & Baker, Kenneth R., 2012. "Modeling activity times by the Parkinson distribution with a lognormal core: Theory and validation," European Journal of Operational Research, Elsevier, vol. 216(2), pages 386-396.
    12. Song, Dong-Ping, 2006. "Raw material release time control for complex make-to-order products with stochastic processing times," International Journal of Production Economics, Elsevier, vol. 103(1), pages 371-385, September.
    13. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    14. He, Yukang & Jia, Tao & Zheng, Weibo, 2023. "Tabu search for dedicated resource-constrained multiproject scheduling to minimise the maximal cash flow gap under uncertainty," European Journal of Operational Research, Elsevier, vol. 310(1), pages 34-52.
    15. Illana Bendavid & Yariv N. Marmor & Boris Shnits, 2018. "Developing an optimal appointment scheduling for systems with rigid standby time under pre-determined quality of service," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 54-77, June.
    16. Kerkhove, L.-P. & Vanhoucke, M., 2017. "Optimised scheduling for weather sensitive offshore construction projects," Omega, Elsevier, vol. 66(PA), pages 58-78.
    17. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    18. Creemers, Stefan, 2018. "Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure," European Journal of Operational Research, Elsevier, vol. 267(1), pages 16-22.
    19. Jorgensen, Trond & Wallace, Stein W., 2000. "Improving project cost estimation by taking into account managerial flexibility," European Journal of Operational Research, Elsevier, vol. 127(2), pages 239-251, December.
    20. Magni, Carlo Alberto, 2015. "Investment, financing and the role of ROA and WACC in value creation," European Journal of Operational Research, Elsevier, vol. 244(3), pages 855-866.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:186:y:2011:i:1:p:429-442:10.1007/s10479-010-0733-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.