IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v122y2003i1p141-16110.1023-a1026146507143.html
   My bibliography  Save this article

A Lagrangean Heuristic for a Modular Capacitated Location Problem

Author

Listed:
  • Isabel Correia
  • M. Captivo

Abstract

This paper considers the Modular Capacitated Location Problem (MCLP) which consists of finding the location and capacity of the facilities, to serve a set of customers at a minimum total cost. Each customer has an associated demand and the capacity of each potential location must be chosen from a finite and discrete set of available capacities. Practical applications of this problem can be found in the location of warehouses, schools, health care services or other types of public services. For the MCLP different mixed integer linear programming models are proposed. The authors develop upper and lower bounds on the problem's optimal value and present computational results with randomly generated tests problems. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • Isabel Correia & M. Captivo, 2003. "A Lagrangean Heuristic for a Modular Capacitated Location Problem," Annals of Operations Research, Springer, vol. 122(1), pages 141-161, September.
  • Handle: RePEc:spr:annopr:v:122:y:2003:i:1:p:141-161:10.1023/a:1026146507143
    DOI: 10.1023/A:1026146507143
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1026146507143
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1026146507143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandra Ade Irawan & Dylan Jones, 2019. "Formulation and solution of a two-stage capacitated facility location problem with multilevel capacities," Annals of Operations Research, Springer, vol. 272(1), pages 41-67, January.
    2. Sanjay Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Modeling and solving a logging camp location problem," Annals of Operations Research, Springer, vol. 232(1), pages 151-177, September.
    3. Becker, Tristan & Lier, Stefan & Werners, Brigitte, 2019. "Value of modular production concepts in future chemical industry production networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 957-970.
    4. Sondes Hammami & Aida Jebali, 2021. "Designing modular capacitated emergency medical service using information on ambulance trip," Operational Research, Springer, vol. 21(3), pages 1723-1742, September.
    5. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2010. "Single-assignment hub location problems with multiple capacity levels," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1047-1066, September.
    6. Christensen, Tue Rauff Lind & Klose, Andreas, 2021. "A fast exact method for the capacitated facility location problem with differentiable convex production costs," European Journal of Operational Research, Elsevier, vol. 292(3), pages 855-868.
    7. Shilian Han & Jerry Mendel, 2012. "A new method for managing the uncertainties in evaluating multi-person multi-criteria location choices, using a perceptual computer," Annals of Operations Research, Springer, vol. 195(1), pages 277-309, May.
    8. Chandra Ade Irawan & Martino Luis & Said Salhi & Arif Imran, 2019. "The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 275(2), pages 367-392, April.
    9. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2017. "Lagrangian Heuristics for Large-Scale Dynamic Facility Location with Generalized Modular Capacities," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 388-404, August.
    10. Amin Akbari & Ronald Pelot & H. A. Eiselt, 2018. "A modular capacitated multi-objective model for locating maritime search and rescue vessels," Annals of Operations Research, Springer, vol. 267(1), pages 3-28, August.
    11. Broek, John v.d. & Schutz, Peter & Stougie, Leen & Tomasgard, Asgeir, 2006. "Location of slaughterhouses under economies of scale," European Journal of Operational Research, Elsevier, vol. 175(2), pages 740-750, December.
    12. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    13. Tue R. L. Christensen & Kim Allan Andersen & Andreas Klose, 2013. "Solving the Single-Sink, Fixed-Charge, Multiple-Choice Transportation Problem by Dynamic Programming," Transportation Science, INFORMS, vol. 47(3), pages 428-438, August.
    14. Correia, Isabel & Gouveia, Luís & Saldanha-da-Gama, Francisco, 2010. "Discretized formulations for capacitated location problems with modular distribution costs," European Journal of Operational Research, Elsevier, vol. 204(2), pages 237-244, July.
    15. Dupont, Lionel, 2008. "Branch and bound algorithm for a facility location problem with concave site dependent costs," International Journal of Production Economics, Elsevier, vol. 112(1), pages 245-254, March.
    16. Silva, Allyson & Aloise, Daniel & Coelho, Leandro C. & Rocha, Caroline, 2021. "Heuristics for the dynamic facility location problem with modular capacities," European Journal of Operational Research, Elsevier, vol. 290(2), pages 435-452.
    17. Šárka Štádlerová & Sanjay Dominik Jena & Peter Schütz, 2023. "Using Lagrangian relaxation to locate hydrogen production facilities under uncertain demand: a case study from Norway," Computational Management Science, Springer, vol. 20(1), pages 1-32, December.
    18. Ge, Houtian & Goetz, Stephan & Canning, Patrick & Perez, Agnes, 2018. "Optimal locations of fresh produce aggregation facilities in the United States with scale economies," International Journal of Production Economics, Elsevier, vol. 197(C), pages 143-157.
    19. Puntipa Punyim & Ampol Karoonsoontawong & Avinash Unnikrishnan & Vatanavongs Ratanavaraha, 2022. "A Heuristic for the Two-Echelon Multi-Period Multi-Product Location–Inventory Problem with Partial Facility Closing and Reopening," Sustainability, MDPI, vol. 14(17), pages 1-32, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:122:y:2003:i:1:p:141-161:10.1023/a:1026146507143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.