IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v106y2022i4d10.1007_s10182-022-00441-z.html
   My bibliography  Save this article

Imputation-based empirical likelihood inferences for partially nonlinear quantile regression models with missing responses

Author

Listed:
  • Xiaoshuang Zhou

    (Dezhou University)

  • Peixin Zhao

    (Chongqing Technology and Business University)

  • Yujie Gai

    (Centural University of Finance and Economics)

Abstract

In this paper, we consider the confidence interval construction for the partially nonlinear models with missing responses at random under the framework of quantile regression. We propose an imputation-based empirical likelihood method to construct statistical inferences for both the unknown parametric vector in the nonlinear function and the nonparametric function and show that the proposed empirical log-likelihood ratios are both asymptotically chi-squared in theory. Furthermore, the confidence region for the parametric vector and the pointwise confidence interval for the nonparametric function are constructed. Some simulation studies are implemented to assess the performances of the proposed estimation method, and simulation results indicate that the proposed method is workable.

Suggested Citation

  • Xiaoshuang Zhou & Peixin Zhao & Yujie Gai, 2022. "Imputation-based empirical likelihood inferences for partially nonlinear quantile regression models with missing responses," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 705-722, December.
  • Handle: RePEc:spr:alstar:v:106:y:2022:i:4:d:10.1007_s10182-022-00441-z
    DOI: 10.1007/s10182-022-00441-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-022-00441-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-022-00441-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(1), pages 1-31, February.
    2. Huang, Tzee-Ming & Chen, Hung, 2008. "Estimating the parametric component of nonlinear partial spline model," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1665-1680, September.
    3. Yiguo Sun, 2005. "Semiparametric Efficient Estimation of Partially Linear Quantile Regression Models," Annals of Economics and Finance, Society for AEF, vol. 6(1), pages 105-127, May.
    4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    5. Peixin Zhao & Xiaoshuang Zhou, 2018. "Robust empirical likelihood for partially linear models via weighted composite quantile regression," Computational Statistics, Springer, vol. 33(2), pages 659-674, June.
    6. Chen, Songnian & Khan, Shakeeb, 2001. "Semiparametric Estimation Of A Partially Linear Censored Regression Model," Econometric Theory, Cambridge University Press, vol. 17(3), pages 567-590, June.
    7. Xue, Liugen & Zhang, Jinghua, 2020. "Empirical likelihood for partially linear single-index models with missing observations," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    8. Tang, Cheng Yong & Leng, Chenlei, 2012. "An empirical likelihood approach to quantile regression with auxiliary information," Statistics & Probability Letters, Elsevier, vol. 82(1), pages 29-36.
    9. Shuanghua Luo & Changlin Mei & Cheng-yi Zhang, 2017. "Smoothed empirical likelihood for quantile regression models with response data missing at random," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 95-116, January.
    10. Xiaofeng Lv & Rui Li, 2013. "Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 317-347, October.
    11. Song, Lixin & Zhao, Yue & Wang, Xiaoguang, 2010. "Sieve least squares estimation for partially nonlinear models," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1271-1283, September.
    12. Liugen Xue & Lixing Zhu, 2007. "Empirical Likelihood Semiparametric Regression Analysis for Longitudinal Data," Biometrika, Biometrika Trust, vol. 94(4), pages 921-937.
    13. Runze Li & Lei Nie, 2008. "Efficient Statistical Inference Procedures for Partially Nonlinear Models and their Applications," Biometrics, The International Biometric Society, vol. 64(3), pages 904-911, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peixin Zhao & Xinrong Tang, 2016. "Imputation based statistical inference for partially linear quantile regression models with missing responses," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(8), pages 991-1009, November.
    2. Xiaofeng Lv & Rui Li, 2013. "Smoothed empirical likelihood analysis of partially linear quantile regression models with missing response variables," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 317-347, October.
    3. Yiguo Sun & Thanasis Stengos, 2008. "The absolute health income hypothesis revisited: a semiparametric quantile regression approach," Empirical Economics, Springer, vol. 35(2), pages 395-412, September.
    4. Sun, Yiguo, 2006. "A Consistent Nonparametric Equality Test Of Conditional Quantile Functions," Econometric Theory, Cambridge University Press, vol. 22(4), pages 614-632, August.
    5. Yiguo Sun, 2005. "Semiparametric Efficient Estimation of Partially Linear Quantile Regression Models," Annals of Economics and Finance, Society for AEF, vol. 6(1), pages 105-127, May.
    6. Yunlu Jiang & Guo-Liang Tian & Yu Fei, 2019. "A robust and efficient estimation method for partially nonlinear models via a new MM algorithm," Statistical Papers, Springer, vol. 60(6), pages 2063-2085, December.
    7. Wu, Chaojiang & Yu, Yan, 2014. "Partially linear modeling of conditional quantiles using penalized splines," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 170-187.
    8. Wang, Zhaoliang & Xue, Liugen & Liu, Juanfang, 2019. "Checking nonparametric component for partially nonlinear model with missing response," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 1-8.
    9. Qu, Zhongjun & Yoon, Jungmo, 2015. "Nonparametric estimation and inference on conditional quantile processes," Journal of Econometrics, Elsevier, vol. 185(1), pages 1-19.
    10. Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.
    11. Sun, Y., 2003. "Square Root N - Consistent Semiparametric Estimation of Partially Linear Quantile Regression Models," Working Papers 2003-11, University of Guelph, Department of Economics and Finance.
    12. Guo, Jing & Wang, Lei & Zhang, Zhengyu, 2022. "Identification and estimation of a heteroskedastic censored regression model with random coefficient dummy endogenous regressors," Economic Modelling, Elsevier, vol. 110(C).
    13. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
    14. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    15. Andrew Chesher, 2003. "Nonparametric identification with discrete endogenous variables," CeMMAP working papers 06/03, Institute for Fiscal Studies.
    16. Sungwon Lee & Joon H. Ro, 2020. "Nonparametric Tests for Conditional Quantile Independence with Duration Outcomes," Working Papers 2013, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    17. Horowitz, Joel L. & Lee, Sokbae, 2005. "Nonparametric Estimation of an Additive Quantile Regression Model," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1238-1249, December.
    18. Hong-Xia Xu & Guo-Liang Fan & Zhen-Long Chen & Jiang-Feng Wang, 2018. "Weighted quantile regression and testing for varying-coefficient models with randomly truncated data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 565-588, October.
    19. Yebin Cheng & Jan G. De Gooijer & Dawit Zerom, 2011. "Efficient Estimation of an Additive Quantile Regression Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(1), pages 46-62, March.
    20. Pereda-Fernández, Santiago, 2023. "Identification and estimation of triangular models with a binary treatment," Journal of Econometrics, Elsevier, vol. 234(2), pages 585-623.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:106:y:2022:i:4:d:10.1007_s10182-022-00441-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.