IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v101y2017i2d10.1007_s10182-016-0284-x.html
   My bibliography  Save this article

Quantile regression in heteroscedastic varying coefficient models

Author

Listed:
  • Y. Andriyana

    (KU Leuven
    Universitas Padjadjaran)

  • I. Gijbels

    (KU Leuven)

Abstract

Varying coefficient models are flexible models to describe the dynamic structure in longitudinal data. Quantile regression, more than mean regression, gives partial information on the conditional distribution of the response given the covariates. In the literature, the focus has been so far mostly on homoscedastic quantile regression models, whereas there is an interest in looking into heteroscedastic modelling. This paper contributes to the area by modelling the heteroscedastic structure and estimating it from the data, together with estimating the quantile functions. The use of the proposed methods is illustrated on real-data applications. The finite-sample behaviour of the methods is investigated via a simulation study, which includes a comparison with an existing method.

Suggested Citation

  • Y. Andriyana & I. Gijbels, 2017. "Quantile regression in heteroscedastic varying coefficient models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(2), pages 151-176, April.
  • Handle: RePEc:spr:alstar:v:101:y:2017:i:2:d:10.1007_s10182-016-0284-x
    DOI: 10.1007/s10182-016-0284-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-016-0284-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-016-0284-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sabine Schnabel & Paul Eilers, 2013. "Simultaneous estimation of quantile curves using quantile sheets," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(1), pages 77-87, January.
    2. Howard D. Bondell & Brian J. Reich & Huixia Wang, 2010. "Noncrossing quantile regression curve estimation," Biometrika, Biometrika Trust, vol. 97(4), pages 825-838.
    3. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731.
    4. Y. Andriyana & I. Gijbels & A. Verhasselt, 2014. "P-splines quantile regression estimation in varying coefficient models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(1), pages 153-194, March.
    5. Yufeng Liu & Yichao Wu, 2011. "Simultaneous multiple non-crossing quantile regression estimation using kernel constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 415-437.
    6. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    7. Stasinopoulos, D. Mikis & Rigby, Robert A., 2007. "Generalized Additive Models for Location Scale and Shape (GAMLSS) in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 23(i07).
    8. Annie Qu & Runze Li, 2006. "Quadratic Inference Functions for Varying-Coefficient Models with Longitudinal Data," Biometrics, The International Biometric Society, vol. 62(2), pages 379-391, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ting & Shi, Chengchun & Lu, Zhaohua & Li, Yi & Zhu, Hongtu, 2024. "Evaluating dynamic conditional quantile treatment effects with applications in ridesharing," LSE Research Online Documents on Economics 122488, London School of Economics and Political Science, LSE Library.
    2. Hong-Xia Xu & Guo-Liang Fan & Zhen-Long Chen & Jiang-Feng Wang, 2018. "Weighted quantile regression and testing for varying-coefficient models with randomly truncated data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 565-588, October.
    3. Bertho Tantular & Budi Nurani Ruchjana & Yudhie Andriyana & Anneleen Verhasselt, 2023. "Quantile Regression in Space-Time Varying Coefficient Model of Upper Respiratory Tract Infections Data," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    4. Xingcai Zhou & Guang Yang & Yu Xiang, 2022. "Quantile-Wavelet Nonparametric Estimates for Time-Varying Coefficient Models," Mathematics, MDPI, vol. 10(13), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    2. Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
    3. Weihua Zhao & Weiping Zhang & Heng Lian, 2020. "Marginal quantile regression for varying coefficient models with longitudinal data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 213-234, February.
    4. Zhao, Weihua & Lian, Heng & Song, Xinyuan, 2017. "Composite quantile regression for correlated data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 15-33.
    5. Das, Priyam & Ghosal, Subhashis, 2018. "Bayesian non-parametric simultaneous quantile regression for complete and grid data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 172-186.
    6. Hao, Meiling & Lin, Yuanyuan & Shen, Guohao & Su, Wen, 2023. "Nonparametric inference on smoothed quantile regression process," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    7. Y. Andriyana & I. Gijbels & A. Verhasselt, 2018. "Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity," Statistical Papers, Springer, vol. 59(4), pages 1589-1621, December.
    8. Maike Hohberg & Peter Pütz & Thomas Kneib, 2020. "Treatment effects beyond the mean using distributional regression: Methods and guidance," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-29, February.
    9. repec:hum:wpaper:sfb649dp2015-031 is not listed on IDEAS
    10. Siklos, Pierre L., 2013. "Sources of disagreement in inflation forecasts: An international empirical investigation," Journal of International Economics, Elsevier, vol. 90(1), pages 218-231.
    11. A. Aghamohammadi & S. Mohammadi, 2017. "Bayesian analysis of penalized quantile regression for longitudinal data," Statistical Papers, Springer, vol. 58(4), pages 1035-1053, December.
    12. repec:hum:wpaper:sfb649dp2014-030 is not listed on IDEAS
    13. R H Spady & S Stouli, 2018. "Dual regression," Biometrika, Biometrika Trust, vol. 105(1), pages 1-18.
    14. Guodong Li & Yang Li & Chih-Ling Tsai, 2015. "Quantile Correlations and Quantile Autoregressive Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 246-261, March.
    15. Luke B. Smith & Brian J. Reich & Amy H. Herring & Peter H. Langlois & Montserrat Fuentes, 2015. "Multilevel quantile function modeling with application to birth outcomes," Biometrics, The International Biometric Society, vol. 71(2), pages 508-519, June.
    16. Christian E. Galarza & Panpan Zhang & Víctor H. Lachos, 2021. "Logistic Quantile Regression for Bounded Outcomes Using a Family of Heavy-Tailed Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 325-349, November.
    17. Ilaria Lucrezia Amerise, 2013. "Weighted Non-Crossing Quantile Regressions," Working Papers 201308, Università della Calabria, Dipartimento di Economia, Statistica e Finanza "Giovanni Anania" - DESF.
    18. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2024. "Inflation Target at Risk: A Time-varying Parameter Distributional Regression," Papers 2403.12456, arXiv.org.
    19. Paolo Frumento & Nicola Salvati, 2021. "Parametric modeling of quantile regression coefficient functions with count data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(4), pages 1237-1258, October.
    20. Bertho Tantular & Budi Nurani Ruchjana & Yudhie Andriyana & Anneleen Verhasselt, 2023. "Quantile Regression in Space-Time Varying Coefficient Model of Upper Respiratory Tract Infections Data," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    21. Kuk, Anthony Y.C., 2017. "Function compositional adjustments of conditional quantile curves," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 281-293.
    22. Yuzhi Cai, 2016. "A Comparative Study Of Monotone Quantile Regression Methods For Financial Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:101:y:2017:i:2:d:10.1007_s10182-016-0284-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.