IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v74y2022i4d10.1007_s10463-021-00813-3.html
   My bibliography  Save this article

Empirical tail conditional allocation and its consistency under minimal assumptions

Author

Listed:
  • N. V. Gribkova

    (Saint Petersburg State University
    Emperor Alexander I St. Petersburg State Transport University)

  • J. Su

    (Purdue University
    York University)

  • R. Zitikis

    (York University
    Western University)

Abstract

Under minimal assumptions, we prove that an empirical estimator of the tail conditional allocation (TCA), also known as the marginal expected shortfall, is consistent. Examples are provided to confirm the minimality of the assumptions. A simulation study illustrates the performance of the estimator in the context of developing confidence intervals for the TCA. The philosophy adopted in the present paper relies on three principles: easiness of practical use, mathematical rigor, and practical justifiability and verifiability of assumptions.

Suggested Citation

  • N. V. Gribkova & J. Su & R. Zitikis, 2022. "Empirical tail conditional allocation and its consistency under minimal assumptions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 713-735, August.
  • Handle: RePEc:spr:aistmt:v:74:y:2022:i:4:d:10.1007_s10463-021-00813-3
    DOI: 10.1007/s10463-021-00813-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-021-00813-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-021-00813-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan-Juan Cai & John H. J. Einmahl & Laurens Haan & Chen Zhou, 2015. "Estimation of the marginal expected shortfall: the mean when a related variable is extreme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 417-442, March.
    2. Juan‐Juan Cai & Eni Musta, 2020. "Estimation of the marginal expected shortfall under asymptotic independence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(1), pages 56-83, March.
    3. Nadezhda Gribkova & Ričardas Zitikis, 2019. "Weighted allocations, their concomitant-based estimators, and asymptotics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 811-835, August.
    4. Edward Furman & Yisub Kye & Jianxi Su, 2021. "A Reconciliation of the Top-Down and Bottom-Up Approaches to Risk Capital Allocations: Proportional Allocations Revisited," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(3), pages 395-416, July.
    5. Alexandru V. Asimit & Raluca Vernic & Ricardas Zitikis, 2016. "Background Risk Models and Stepwise Portfolio Construction," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 805-827, September.
    6. Marcel Carcea & Robert Serfling, 2015. "A Gini Autocovariance Function for Time Series Modelling," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 817-838, November.
    7. Schechtman, Edna & Shelef, Amit & Yitzhaki, Shlomo & Zitikis, Ričardas, 2008. "Testing Hypotheses About Absolute Concentration Curves And Marginal Conditional Stochastic Dominance," Econometric Theory, Cambridge University Press, vol. 24(4), pages 1044-1062, August.
    8. Qiuqi Wang & Ruodu Wang & Ricardas Zitikis, 2021. "Risk measures induced by efficient insurance contracts," Papers 2109.00314, arXiv.org, revised Sep 2021.
    9. Shelef, Amit, 2016. "A Gini-based unit root test," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 763-772.
    10. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    11. Amit Shelef & Edna Schechtman, 2019. "A Gini-based time series analysis and test for reversibility," Statistical Papers, Springer, vol. 60(3), pages 687-716, June.
    12. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    13. Daniel Bauer & George Zanjani, 2016. "The Marginal Cost of Risk, Risk Measures, and Capital Allocation," Management Science, INFORMS, vol. 62(5), pages 1431-1457, May.
    14. Haim Shalit & Shlomo Yitzhaki, 1994. "Marginal Conditional Stochastic Dominance," Management Science, INFORMS, vol. 40(5), pages 670-684, May.
    15. Paul Embrechts & Tiantian Mao & Qiuqi Wang & Ruodu Wang, 2021. "Bayes risk, elicitability, and the Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1190-1217, October.
    16. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunran Wei & Ricardas Zitikis, 2022. "Assessing the difference between integrated quantiles and integrated cumulative distribution functions," Papers 2210.16880, arXiv.org, revised Apr 2023.
    2. Gribkova, N.V. & Su, J. & Zitikis, R., 2022. "Inference for the tail conditional allocation: Large sample properties, insurance risk assessment, and compound sums of concomitants," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 199-222.
    3. Wei, Yunran & Zitikis, Ričardas, 2023. "Assessing the difference between integrated quantiles and integrated cumulative distribution functions," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 163-172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gribkova, N.V. & Su, J. & Zitikis, R., 2022. "Inference for the tail conditional allocation: Large sample properties, insurance risk assessment, and compound sums of concomitants," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 199-222.
    2. Sudheesh K. Kattumannil & N. Sreelakshmi & N. Balakrishnan, 2022. "Non-Parametric Inference for Gini Covariance and its Variants," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 790-807, August.
    3. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    4. Eric C. K. Cheung & Oscar Peralta & Jae-Kyung Woo, 2021. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Papers 2201.11122, arXiv.org.
    5. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    6. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    7. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.
    8. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    9. Charpentier, Arthur & Mussard, Stéphane & Ouraga, Téa, 2021. "Principal component analysis: A generalized Gini approach," European Journal of Operational Research, Elsevier, vol. 294(1), pages 236-249.
    10. Tse, SzeMan, 2011. "Composing the cumulative quantile regression function and the Goldie concentration curve," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 674-682, March.
    11. M. Grazia Pittau & Shlomo Yitzhaki & Roberto Zelli, 2011. "The make-up of a regression coefficient: An application to gender," DSS Empirical Economics and Econometrics Working Papers Series 2011/3, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
    12. Jianxi Su & Edward Furman, 2016. "A form of multivariate Pareto distribution with applications to financial risk measurement," Papers 1607.04737, arXiv.org.
    13. Denuit, Michel M. & Huang, Rachel J. & Tzeng, Larry Y. & Wang, Christine W., 2014. "Almost marginal conditional stochastic dominance," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 57-66.
    14. Yannick Hoga, 2023. "The Estimation Risk in Extreme Systemic Risk Forecasts," Papers 2304.10349, arXiv.org.
    15. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.
    16. Asimit, Alexandru V. & Furman, Edward & Vernic, Raluca, 2010. "On a multivariate Pareto distribution," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 308-316, April.
    17. Doron Nisani & Amit Shelef, 2021. "A statistical analysis of investor preferences for portfolio selection," Empirical Economics, Springer, vol. 61(4), pages 1883-1915, October.
    18. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    19. Jaume Belles-Sampera & Montserrat Guillen & Miguel Santolino, 2023. "Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    20. Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:74:y:2022:i:4:d:10.1007_s10463-021-00813-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.