IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v70y2018i1d10.1007_s10463-016-0583-8.html
   My bibliography  Save this article

Clustering dynamics in a class of normalised generalised gamma dependent priors

Author

Listed:
  • Matteo Ruggiero

    (University of Torino
    Collegio Carlo Alberto)

  • Matteo Sordello

    (University of Pennsylvania)

Abstract

Normalised generalised gamma processes are random probability measures that induce nonparametric prior distributions widely used in Bayesian statistics, particularly for mixture modelling. We construct a class of dependent normalised generalised gamma priors induced by a stationary population model of Moran type, which exploits a generalised Pólya urn scheme associated with the prior. We study the asymptotic scaling for the dynamics of the number of clusters in the sample, which in turn provides a dynamic measure of diversity in the underlying population. The limit is formalised to be a positive non-stationary diffusion process which falls outside well-known families, with unbounded drift and an entrance boundary at the origin. We also introduce a new class of stationary positive diffusions, whose invariant measures are explicit and have power law tails, which approximate weakly the scaling limit.

Suggested Citation

  • Matteo Ruggiero & Matteo Sordello, 2018. "Clustering dynamics in a class of normalised generalised gamma dependent priors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 83-98, February.
  • Handle: RePEc:spr:aistmt:v:70:y:2018:i:1:d:10.1007_s10463-016-0583-8
    DOI: 10.1007/s10463-016-0583-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-016-0583-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-016-0583-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lijoi, Antonio & Mena, Ramses H. & Prunster, Igor, 2005. "Hierarchical Mixture Modeling With Normalized Inverse-Gaussian Priors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1278-1291, December.
    2. Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2007. "Controlling the reinforcement in Bayesian non‐parametric mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 715-740, September.
    3. J. E. Griffin & M. Kolossiatis & M. F. J. Steel, 2013. "Comparing distributions by using dependent normalized random-measure mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 499-529, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolossiatis, M. & Griffin, J.E. & Steel, M.F.J., 2011. "Modeling overdispersion with the normalized tempered stable distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2288-2301, July.
    2. Antonio Canale & Igor Prünster, 2017. "Robustifying Bayesian nonparametric mixtures for count data," Biometrics, The International Biometric Society, vol. 73(1), pages 174-184, March.
    3. Antonio Lijoi & Igor Pruenster, 2009. "Distributional Properties of means of Random Probability Measures," ICER Working Papers - Applied Mathematics Series 22-2009, ICER - International Centre for Economic Research.
    4. Raffaele Argiento & Alessandra Guglielmi & Antonio Pievatolo, 2014. "Estimation, prediction and interpretation of NGG random effects models: an application to Kevlar fibre failure times," Statistical Papers, Springer, vol. 55(3), pages 805-826, August.
    5. François Caron & Emily B. Fox, 2017. "Sparse graphs using exchangeable random measures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1295-1366, November.
    6. J. E. Griffin & M. Kolossiatis & M. F. J. Steel, 2013. "Comparing distributions by using dependent normalized random-measure mixtures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 499-529, June.
    7. Antonio Lijoi & Bernardo Nipoti & Igor Prünster, 2013. "Dependent mixture models: clustering and borrowing information," DEM Working Papers Series 046, University of Pavia, Department of Economics and Management.
    8. Julyan Arbel & Stefano Favaro, 2021. "Approximating Predictive Probabilities of Gibbs-Type Priors," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 496-519, February.
    9. Lancelot F. James & Antonio Lijoi & Igor Prünster, 2009. "Posterior Analysis for Normalized Random Measures with Independent Increments," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 76-97, March.
    10. Lijoi, Antonio & Nipoti, Bernardo & Prünster, Igor, 2014. "Dependent mixture models: Clustering and borrowing information," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 417-433.
    11. Pierpaolo De Blasi & Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster & Mattteo Ruggiero, 2013. "Are Gibbs-type priors the most natural generalization of the Dirichlet process?," DEM Working Papers Series 054, University of Pavia, Department of Economics and Management.
    12. Corradin, Riccardo & Nieto-Barajas, Luis Enrique & Nipoti, Bernardo, 2022. "Optimal stratification of survival data via Bayesian nonparametric mixtures," Econometrics and Statistics, Elsevier, vol. 22(C), pages 17-38.
    13. Ruth Fuentes–García & Ramsés Mena & Stephen Walker, 2010. "A Probability for Classification Based on the Dirichlet Process Mixture Model," Journal of Classification, Springer;The Classification Society, vol. 27(3), pages 389-403, November.
    14. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "On the stick–breaking representation of normalized inverse Gaussian priors," DEM Working Papers Series 008, University of Pavia, Department of Economics and Management.
    15. Antonio Lijoi & Igor Pruenster, 2009. "Models beyond the Dirichlet process," ICER Working Papers - Applied Mathematics Series 23-2009, ICER - International Centre for Economic Research.
    16. Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
    17. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2016. "Random density functions with common atoms and pairwise dependence," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 236-249.
    18. Canale, Antonio & Lijoi, Antonio & Nipoti, Bernardo & Prünster, Igor, 2023. "Inner spike and slab Bayesian nonparametric models," Econometrics and Statistics, Elsevier, vol. 27(C), pages 120-135.
    19. Antonio Canale & Bruno Scarpa, 2016. "Bayesian nonparametric location–scale–shape mixtures," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 113-130, March.
    20. Antonio Lijoi & Igor Prunster, 2009. "Models beyond the Dirichlet process," Quaderni di Dipartimento 103, University of Pavia, Department of Economics and Quantitative Methods.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:70:y:2018:i:1:d:10.1007_s10463-016-0583-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.