IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v67y2015i2p211-227.html
   My bibliography  Save this article

An empirical estimator for the sparsity of a large covariance matrix under multivariate normal assumptions

Author

Listed:
  • Binyan Jiang

Abstract

Large covariance or correlation matrix is frequently assumed to be sparse in that a number of the off-diagonal elements of the matrix are zero. This paper focuses on estimating the sparsity of a large population covariance matrix using a sample correlation matrix under multivariate normal assumptions. We show that sparsity of a population covariance matrix can be well estimated by thresholding the sample correlation matrix. We then propose an empirical estimator for the sparsity and show that it is closely related to the thresholding methods. Upper bounds for the estimation error of the empirical estimator are given under mild conditions. Simulation shows that the empirical estimator can have smaller mean absolute errors than its main competitors. Furthermore, when the dimension of the covariance matrix is very large, we propose a generalized empirical estimator using simple random sampling. It is shown that the generalized empirical estimator can still estimate the sparsity well while the computation complexity can be greatly reduced. Copyright The Institute of Statistical Mathematics, Tokyo 2015

Suggested Citation

  • Binyan Jiang, 2015. "An empirical estimator for the sparsity of a large covariance matrix under multivariate normal assumptions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 211-227, April.
  • Handle: RePEc:spr:aistmt:v:67:y:2015:i:2:p:211-227
    DOI: 10.1007/s10463-014-0447-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-014-0447-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-014-0447-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Binyan Jiang & Wei-Liem Loh, 2012. "On the sparsity of signals in a random sample," Biometrika, Biometrika Trust, vol. 99(4), pages 915-928.
    2. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    3. Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
    4. Adam J. Rothman, 2012. "Positive definite estimators of large covariance matrices," Biometrika, Biometrika Trust, vol. 99(3), pages 733-740.
    5. Jiang, Binyan, 2013. "Covariance selection by thresholding the sample correlation matrix," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2492-2498.
    6. Lingzhou Xue & Shiqian Ma & Hui Zou, 2012. "Positive-Definite ℓ 1 -Penalized Estimation of Large Covariance Matrices," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1480-1491, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kashlak, Adam B., 2021. "Non-asymptotic error controlled sparse high dimensional precision matrix estimation," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    2. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    3. Cui, Ying & Leng, Chenlei & Sun, Defeng, 2016. "Sparse estimation of high-dimensional correlation matrices," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 390-403.
    4. Yang, Yihe & Zhou, Jie & Pan, Jianxin, 2021. "Estimation and optimal structure selection of high-dimensional Toeplitz covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    5. Xin Wang & Lingchen Kong & Liqun Wang & Zhaoqilin Yang, 2023. "High-Dimensional Covariance Estimation via Constrained L q -Type Regularization," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    6. Ziqi Chen & Chenlei Leng, 2016. "Dynamic Covariance Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1196-1207, July.
    7. Shaoxin Wang & Hu Yang & Chaoli Yao, 2019. "On the penalized maximum likelihood estimation of high-dimensional approximate factor model," Computational Statistics, Springer, vol. 34(2), pages 819-846, June.
    8. Choi, Young-Geun & Lim, Johan & Roy, Anindya & Park, Junyong, 2019. "Fixed support positive-definite modification of covariance matrix estimators via linear shrinkage," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 234-249.
    9. Denis Belomestny & Mathias Trabs & Alexandre Tsybakov, 2017. "Sparse covariance matrix estimation in high-dimensional deconvolution," Working Papers 2017-25, Center for Research in Economics and Statistics.
    10. Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
    11. Li, Peili & Xiao, Yunhai, 2018. "An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 292-307.
    12. Avagyan, Vahe & Alonso Fernández, Andrés Modesto & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Jian, Zhihong & Deng, Pingjun & Zhu, Zhican, 2018. "High-dimensional covariance forecasting based on principal component analysis of high-frequency data," Economic Modelling, Elsevier, vol. 75(C), pages 422-431.
    14. Yan Zhang & Jiyuan Tao & Zhixiang Yin & Guoqiang Wang, 2022. "Improved Large Covariance Matrix Estimation Based on Efficient Convex Combination and Its Application in Portfolio Optimization," Mathematics, MDPI, vol. 10(22), pages 1-15, November.
    15. Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
    16. Arnab Chakrabarti & Rituparna Sen, 2018. "Some Statistical Problems with High Dimensional Financial data," Papers 1808.02953, arXiv.org.
    17. Joo, Young C. & Park, Sung Y., 2021. "Optimal portfolio selection using a simple double-shrinkage selection rule," Finance Research Letters, Elsevier, vol. 43(C).
    18. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    19. Jia, Shengji & Zhang, Chunming & Lu, Haoran, 2022. "Covariance function versus covariance matrix estimation in efficient semi-parametric regression for longitudinal data analysis," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    20. Vahe Avagyan & Andrés M. Alonso & Francisco J. Nogales, 2018. "D-trace estimation of a precision matrix using adaptive Lasso penalties," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 425-447, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:67:y:2015:i:2:p:211-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.