IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i3p733-740.html
   My bibliography  Save this article

Positive definite estimators of large covariance matrices

Author

Listed:
  • Adam J. Rothman

Abstract

Using convex optimization, we construct a sparse estimator of the covariance matrix that is positive definite and performs well in high-dimensional settings. A lasso-type penalty is used to encourage sparsity and a logarithmic barrier function is used to enforce positive definiteness. Consistency and convergence rate bounds are established as both the number of variables and sample size diverge. An efficient computational algorithm is developed and the merits of the approach are illustrated with simulations and a speech signal classification example. Copyright 2012, Oxford University Press.

Suggested Citation

  • Adam J. Rothman, 2012. "Positive definite estimators of large covariance matrices," Biometrika, Biometrika Trust, vol. 99(3), pages 733-740.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:3:p:733-740
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ass025
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:3:p:733-740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.