IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Clustering of functional data in a low-dimensional subspace

  • Michio Yamamoto


Registered author(s):

    To find optimal clusters of functional objects in a lower-dimensional subspace of data, a sequential method called tandem analysis, is often used, though such a method is problematic. A new procedure is developed to find optimal clusters of functional objects and also find an optimal subspace for clustering, simultaneously. The method is based on the k-means criterion for functional data and seeks the subspace that is maximally informative about the clustering structure in the data. An efficient alternating least-squares algorithm is described, and the proposed method is extended to a regularized method. Analyses of artificial and real data examples demonstrate that the proposed method gives correct and interpretable results. Copyright Springer-Verlag 2012

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by German Classification Society - Gesellschaft für Klassifikation (GfKl) & & Classification and Data Analysis Group of the Italian Statistical Society (CLADAG) & International Federation of Classification Societies (IFCS) in its journal Advances in Data Analysis and Classification.

    Volume (Year): 6 (2012)
    Issue (Month): 3 (October)
    Pages: 219-247

    in new window

    Handle: RePEc:spr:advdac:v:6:y:2012:i:3:p:219-247
    Contact details of provider: Web page:

    Web page:

    Web page:

    Order Information: Web:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Hardy, Andre, 1996. "On the number of clusters," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 83-96, November.
    2. Glenn Milligan & Martha Cooper, 1985. "An examination of procedures for determining the number of clusters in a data set," Psychometrika, Springer, vol. 50(2), pages 159-179, June.
    3. Boente, Graciela & Fraiman, Ricardo, 2000. "Kernel-based functional principal components," Statistics & Probability Letters, Elsevier, vol. 48(4), pages 335-345, July.
    4. Douglas Steinley & Robert Henson, 2005. "OCLUS: An Analytic Method for Generating Clusters with Known Overlap," Journal of Classification, Springer, vol. 22(2), pages 221-250, September.
    5. C. Abraham & P. A. Cornillon & E. Matzner-Løber & N. Molinari, 2003. "Unsupervised Curve Clustering using B-Splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 581-595.
    6. Jan Leeuw & Forrest Young & Yoshio Takane, 1976. "Additive structure in qualitative data: An alternating least squares method with optimal scaling features," Psychometrika, Springer, vol. 41(4), pages 471-503, December.
    7. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer, vol. 2(1), pages 193-218, December.
    8. Tarpey, Thaddeus, 2007. "Linear Transformations and the k-Means Clustering Algorithm: Applications to Clustering Curves," The American Statistician, American Statistical Association, vol. 61, pages 34-40, February.
    9. Charles Bouveyron & Julien Jacques, 2011. "Model-based clustering of time series in group-specific functional subspaces," Advances in Data Analysis and Classification, Springer, vol. 5(4), pages 281-300, December.
    10. Philippe Besse & J. Ramsay, 1986. "Principal components analysis of sampled functions," Psychometrika, Springer, vol. 51(2), pages 285-311, June.
    11. Timmerman, Marieke E. & Ceulemans, Eva & Kiers, Henk A.L. & Vichi, Maurizio, 2010. "Factorial and reduced K-means reconsidered," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1858-1871, July.
    12. Besse, Philippe C. & Cardot, Herve & Ferraty, Frederic, 1997. "Simultaneous non-parametric regressions of unbalanced longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 24(3), pages 255-270, May.
    13. Vichi, Maurizio & Kiers, Henk A. L., 2001. "Factorial k-means analysis for two-way data," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 49-64, July.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:6:y:2012:i:3:p:219-247. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla)

    or (Rebekah McClure)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.