IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i7p1858-1871.html
   My bibliography  Save this article

Factorial and reduced K-means reconsidered

Author

Listed:
  • Timmerman, Marieke E.
  • Ceulemans, Eva
  • Kiers, Henk A.L.
  • Vichi, Maurizio

Abstract

Factorial K-means analysis (FKM) and Reduced K-means analysis (RKM) are clustering methods that aim at simultaneously achieving a clustering of the objects and a dimension reduction of the variables. Because a comprehensive comparison between FKM and RKM is lacking in the literature so far, a theoretical and simulation-based comparison between FKM and RKM is provided. It is shown theoretically how FKM's versus RKM's performances are affected by the presence of residuals within the clustering subspace and/or within its orthocomplement in the observed data. The simulation study confirmed that for both FKM and RKM, the cluster membership recovery generally deteriorates with increasing amount of overlap between clusters. Furthermore, the conjectures were confirmed that for FKM the subspace recovery deteriorates with increasing relative sizes of subspace residuals compared to the complement residuals, and that the reverse holds for RKM. As such, FKM and RKM complement each other. When the majority of the variables reflect the clustering structure, and/or standardized variables are being analyzed, RKM can be expected to perform reasonably well. However, because both RKM and FKM may suffer from subspace and membership recovery problems, it is essential to critically evaluate their solutions on the basis of the content of the clustering problem at hand.

Suggested Citation

  • Timmerman, Marieke E. & Ceulemans, Eva & Kiers, Henk A.L. & Vichi, Maurizio, 2010. "Factorial and reduced K-means reconsidered," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1858-1871, July.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:7:p:1858-1871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00074-5
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glenn Milligan & Martha Cooper, 1988. "A study of standardization of variables in cluster analysis," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 181-204, September.
    2. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    3. Henry Kaiser, 1958. "The varimax criterion for analytic rotation in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 23(3), pages 187-200, September.
    4. Norman Cliff, 1966. "Orthogonal rotation to congruence," Psychometrika, Springer;The Psychometric Society, vol. 31(1), pages 33-42, March.
    5. Douglas Steinley & Robert Henson, 2005. "OCLUS: An Analytic Method for Generating Clusters with Known Overlap," Journal of Classification, Springer;The Classification Society, vol. 22(2), pages 221-250, September.
    6. Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 125-144, March.
    7. Jan Schepers & Eva Ceulemans & Iven Mechelen, 2008. "Selecting Among Multi-Mode Partitioning Models of Different Complexities: A Comparison of Four Model Selection Criteria," Journal of Classification, Springer;The Classification Society, vol. 25(1), pages 67-85, June.
    8. Vichi, Maurizio & Kiers, Henk A. L., 2001. "Factorial k-means analysis for two-way data," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 49-64, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristina Tortora & Mireille Gettler Summa & Marina Marino & Francesco Palumbo, 2016. "Factor probabilistic distance clustering (FPDC): a new clustering method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 441-464, December.
    2. Masaki Mitsuhiro & Hiroshi Yadohisa, 2015. "Reduced $$k$$ k -means clustering with MCA in a low-dimensional space," Computational Statistics, Springer, vol. 30(2), pages 463-475, June.
    3. Nickolay T. Trendafilov & Tsegay Gebrehiwot Gebru, 2016. "Recipes for sparse LDA of horizontal data," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 207-221, August.
    4. Roberto Rocci & Stefano Gattone & Maurizio Vichi, 2011. "A New Dimension Reduction Method: Factor Discriminant K-means," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 210-226, July.
    5. Yoshikazu Terada, 2015. "Strong consistency of factorial $$K$$ K -means clustering," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 335-357, April.
    6. Michio Yamamoto, 2012. "Clustering of functional data in a low-dimensional subspace," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 219-247, October.
    7. Kim De Roover & Eva Ceulemans & Marieke Timmerman & John Nezlek & Patrick Onghena, 2013. "Modeling Differences in the Dimensionality of Multiblock Data by Means of Clusterwise Simultaneous Component Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 648-668, October.
    8. Uno, Kohei & Satomura, Hironori & Adachi, Kohei, 2016. "Fixed factor analysis with clustered factor score constraint," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 265-274.
    9. Yoshikazu Terada, 2014. "Strong Consistency of Reduced K-means Clustering," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 913-931, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:7:p:1858-1871. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.