IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v18y2024i1d10.1007_s11634-022-00515-5.html
   My bibliography  Save this article

The role of diversity and ensemble learning in credit card fraud detection

Author

Listed:
  • Gian Marco Paldino

    (Université Libre de Bruxelles)

  • Bertrand Lebichot

    (Université Libre de Bruxelles)

  • Yann-Aël Le Borgne

    (Université Libre de Bruxelles)

  • Wissam Siblini

    (Research, Development and Innovation)

  • Frédéric Oblé

    (Research, Development and Innovation)

  • Giacomo Boracchi

    (Politecnico di Milano)

  • Gianluca Bontempi

    (Université Libre de Bruxelles)

Abstract

The number of daily credit card transactions is inexorably growing: the e-commerce market expansion and the recent constraints for the Covid-19 pandemic have significantly increased the use of electronic payments. The ability to precisely detect fraudulent transactions is increasingly important, and machine learning models are now a key component of the detection process. Standard machine learning techniques are widely employed, but inadequate for the evolving nature of customers behavior entailing continuous changes in the underlying data distribution. his problem is often tackled by discarding past knowledge, despite its potential relevance in the case of recurrent concepts. Appropriate exploitation of historical knowledge is necessary: we propose a learning strategy that relies on diversity-based ensemble learning and allows to preserve past concepts and reuse them for a faster adaptation to changes. In our experiments, we adopt several state-of-the-art diversity measures and we perform comparisons with various other learning approaches. We assess the effectiveness of our proposed learning strategy on extracts of two real datasets from two European countries, containing more than 30 M and 50 M transactions, provided by our industrial partner, Worldline, a leading company in the field.

Suggested Citation

  • Gian Marco Paldino & Bertrand Lebichot & Yann-Aël Le Borgne & Wissam Siblini & Frédéric Oblé & Giacomo Boracchi & Gianluca Bontempi, 2024. "The role of diversity and ensemble learning in credit card fraud detection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(1), pages 193-217, March.
  • Handle: RePEc:spr:advdac:v:18:y:2024:i:1:d:10.1007_s11634-022-00515-5
    DOI: 10.1007/s11634-022-00515-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-022-00515-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-022-00515-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hung Ba, 2019. "Improving Detection of Credit Card Fraudulent Transactions using Generative Adversarial Networks," Papers 1907.03355, arXiv.org.
    2. Juszczak, Piotr & Adams, Niall M. & Hand, David J. & Whitrow, Christopher & Weston, David J., 2008. "Off-the-peg and bespoke classifiers for fraud detection," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4521-4532, May.
    3. Rousseeuw, Peter & Perrotta, Domenico & Riani, Marco & Hubert, Mia, 2019. "Robust Monitoring of Time Series with Application to Fraud Detection," Econometrics and Statistics, Elsevier, vol. 9(C), pages 108-121.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood," CREATES Research Papers 2019-15, Department of Economics and Business Economics, Aarhus University.
    2. Maira Anis & Mohsin Ali & Shahid Aslam Mirza & Malik Mamoon Munir, 2020. "Analysis of Resampling Techniques on Predictive Performance of Credit Card Classification," Modern Applied Science, Canadian Center of Science and Education, vol. 14(7), pages 1-92, July.
    3. Lucio Barabesi & Andrea Cerioli & Domenico Perrotta, 2021. "Forum on Benford’s law and statistical methods for the detection of frauds," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 767-778, September.
    4. Francesca Torti & Marco Riani & Gianluca Morelli, 2021. "Semiautomatic robust regression clustering of international trade data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 863-894, September.
    5. Maria E. Frey & Hans C. Petersen & Oke Gerke, 2020. "Nonparametric Limits of Agreement for Small to Moderate Sample Sizes: A Simulation Study," Stats, MDPI, vol. 3(3), pages 1-13, August.
    6. Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
    7. Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    8. Paolo Vanini & Sebastiano Rossi & Ermin Zvizdic & Thomas Domenig, 2023. "Online payment fraud: from anomaly detection to risk management," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    9. Igor Sadoune & Marcelin Joanis & Andrea Lodi, 2025. "Implementing a Hierarchical Deep Learning Approach for Simulating Multilevel Auction Data," Computational Economics, Springer;Society for Computational Economics, vol. 65(4), pages 2029-2056, April.
    10. Emanuel Mineda Carneiro & Carlos Henrique Quartucci Forster & Lineu Fernando Stege Mialaret & Luiz Alberto Vieira Dias & Adilson Marques da Cunha, 2022. "High-Cardinality Categorical Attributes and Credit Card Fraud Detection," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    11. Luca Barbaglia & Christophe Croux & Ines Wilms, 2022. "Detecting Anti-dumping Circumvention: A Network Approach," Papers 2207.05394, arXiv.org.
    12. Hand, David J. & Crowder, Martin J., 2012. "Overcoming selectivity bias in evaluating new fraud detection systems for revolving credit operations," International Journal of Forecasting, Elsevier, vol. 28(1), pages 216-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:18:y:2024:i:1:d:10.1007_s11634-022-00515-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.