Unobserved classes and extra variables in high-dimensional discriminant analysis
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-021-00474-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xu, Ping & Brock, Guy N. & Parrish, Rudolph S., 2009. "Modified linear discriminant analysis approaches for classification of high-dimensional microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1674-1687, March.
- Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
- Le, Khuyen T. & Chaux, Caroline & Richard, Frédéric J.P. & Guedj, Eric, 2020. "An adapted linear discriminant analysis with variable selection for the classification in high-dimension, and an application to medical data," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Charles Bouveyron, 2014. "Adaptive Mixture Discriminant Analysis for Supervised Learning with Unobserved Classes," Journal of Classification, Springer;The Classification Society, vol. 31(1), pages 49-84, April.
- Safo, Sandra E. & Ahn, Jeongyoun, 2016. "General sparse multi-class linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 81-90.
- Brusco, Michael J. & Steinley, Douglas, 2011. "Exact and approximate algorithms for variable selection in linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 123-131, January.
- Qing Mai & Hui Zou & Ming Yuan, 2012. "A direct approach to sparse discriminant analysis in ultra-high dimensions," Biometrika, Biometrika Trust, vol. 99(1), pages 29-42.
- Raftery, Adrian E. & Dean, Nema, 2006. "Variable Selection for Model-Based Clustering," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 168-178, March.
- Sanjay Chaudhuri & Mathias Drton & Thomas S. Richardson, 2007. "Estimation of a covariance matrix with zeros," Biometrika, Biometrika Trust, vol. 94(1), pages 199-216.
- Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2011. "Variable selection in model-based discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1374-1387, November.
- Pacheco, Joaquin & Casado, Silvia & Nunez, Laura & Gomez, Olga, 2006. "Analysis of new variable selection methods for discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1463-1478, December.
- Luca Scrucca & Adrian Raftery, 2015. "Improved initialisation of model-based clustering using Gaussian hierarchical partitions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 447-460, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
- Cappozzo, Andrea & Greselin, Francesca & Murphy, Thomas Brendan, 2021. "Robust variable selection for model-based learning in presence of adulteration," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
- Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 295-304, June.
- Jeffrey Andrews & Paul McNicholas, 2014. "Variable Selection for Clustering and Classification," Journal of Classification, Springer;The Classification Society, vol. 31(2), pages 136-153, July.
- Wang, Ketong & Porter, Michael D., 2018. "Optimal Bayesian clustering using non-negative matrix factorization," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 395-411.
- Marek Śmieja & Magdalena Wiercioch, 2017. "Constrained clustering with a complex cluster structure," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 493-518, September.
- Luca Scrucca & Adrian Raftery, 2015. "Improved initialisation of model-based clustering using Gaussian hierarchical partitions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 447-460, December.
- Pacheco, Joaquín & Casado, Silvia & Porras, Santiago, 2013. "Exact methods for variable selection in principal component analysis: Guide functions and pre-selection," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 95-111.
- Stefano Tonellato, 2019. "Bayesian nonparametric clustering as a community detection problem," Working Papers 2019: 20, Department of Economics, University of Venice "Ca' Foscari".
- Douglas Steinley & Michael Brusco, 2008. "Selection of Variables in Cluster Analysis: An Empirical Comparison of Eight Procedures," Psychometrika, Springer;The Psychometric Society, vol. 73(1), pages 125-144, March.
- McNicholas, P.D. & Murphy, T.B. & McDaid, A.F. & Frost, D., 2010. "Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 711-723, March.
- Li-Pang Chen, 2022. "Network-Based Discriminant Analysis for Multiclassification," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 410-431, November.
- Nema Dean & Adrian Raftery, 2010. "Latent class analysis variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 11-35, February.
- Irina Gaynanova & James G. Booth & Martin T. Wells, 2016. "Simultaneous Sparse Estimation of Canonical Vectors in the ≫ Setting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 696-706, April.
- Alessandro Casa & Luca Scrucca & Giovanna Menardi, 2021. "Better than the best? Answers via model ensemble in density-based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 599-623, September.
- Morris, Katherine & McNicholas, Paul D., 2016. "Clustering, classification, discriminant analysis, and dimension reduction via generalized hyperbolic mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 133-150.
- Dolnicar, Sara & Grün, Bettina & Leisch, Friedrich, 2016. "Increasing sample size compensates for data problems in segmentation studies," Journal of Business Research, Elsevier, vol. 69(2), pages 992-999.
- Sahin, Özge & Czado, Claudia, 2022. "Vine copula mixture models and clustering for non-Gaussian data," Econometrics and Statistics, Elsevier, vol. 22(C), pages 136-158.
- Nema Dean & Rebecca Nugent, 2013. "Clustering student skill set profiles in a unit hypercube using mixtures of multivariate betas," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 339-357, September.
- Hivert, Benjamin & Agniel, Denis & Thiébaut, Rodolphe & Hejblum, Boris P., 2024. "Post-clustering difference testing: Valid inference and practical considerations with applications to ecological and biological data," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
More about this item
Keywords
Adaptive supervised classification; Conditional estimation; Model-based discriminant analysis; Unobserved classes; Variable selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:16:y:2022:i:1:d:10.1007_s11634-021-00474-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.