IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0274440.html
   My bibliography  Save this article

Classification and prediction for multi-cancer data with ultrahigh-dimensional gene expressions

Author

Listed:
  • Li-Pang Chen

Abstract

Analysis of gene expression data is an attractive topic in the field of bioinformatics, and a typical application is to classify and predict individuals’ diseases or tumors by treating gene expression values as predictors. A primary challenge of this study comes from ultrahigh-dimensionality, which makes that (i) many predictors in the dataset might be non-informative, (ii) pairwise dependence structures possibly exist among high-dimensional predictors, yielding the network structure. While many supervised learning methods have been developed, it is expected that the prediction performance would be affected if impacts of ultrahigh-dimensionality were not carefully addressed. In this paper, we propose a new statistical learning algorithm to deal with multi-classification subject to ultrahigh-dimensional gene expressions. In the proposed algorithm, we employ the model-free feature screening method to retain informative gene expression values from ultrahigh-dimensional data, and then construct predictive models with network structures of selected gene expression accommodated. Different from existing supervised learning methods that build predictive models based on entire dataset, our approach is able to identify informative predictors and dependence structures for gene expression. Throughout analysis of a real dataset, we find that the proposed algorithm gives precise classification as well as accurate prediction, and outperforms some commonly used supervised learning methods.

Suggested Citation

  • Li-Pang Chen, 2022. "Classification and prediction for multi-cancer data with ultrahigh-dimensional gene expressions," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-25, September.
  • Handle: RePEc:plo:pone00:0274440
    DOI: 10.1371/journal.pone.0274440
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274440
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0274440&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0274440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li-Pang Chen, 2022. "Network-Based Discriminant Analysis for Multiclassification," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 410-431, November.
    2. Li-Pang Chen & Grace Y. Yi & Qihuang Zhang & Wenqing He, 2019. "Multiclass analysis and prediction with network structured covariates," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-25, December.
    3. Xiang Zhang & Yichao Wu & Lan Wang & Runze Li, 2016. "Variable selection for support vector machines in moderately high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 53-76, January.
    4. Maugis, C. & Celeux, G. & Martin-Magniette, M.-L., 2011. "Variable selection in model-based discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1374-1387, November.
    5. Maleika Heenaye-Mamode Khan & Nazmeen Boodoo-Jahangeer & Wasiimah Dullull & Shaista Nathire & Xiaohong Gao & G R Sinha & Kapil Kumar Nagwanshi, 2021. "Multi- class classification of breast cancer abnormalities using Deep Convolutional Neural Network (CNN)," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-15, August.
    6. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    7. Wang, Cheng & Cao, Longbing & Miao, Baiqi, 2013. "Optimal feature selection for sparse linear discriminant analysis and its applications in gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 140-149.
    8. Safo, Sandra E. & Ahn, Jeongyoun, 2016. "General sparse multi-class linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 81-90.
    9. Sourav Chatterjee, 2021. "A New Coefficient of Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 2009-2022, October.
    10. Li-Pang Chen, 2021. "Feature screening based on distance correlation for ultrahigh-dimensional censored data with covariate measurement error," Computational Statistics, Springer, vol. 36(2), pages 857-884, June.
    11. Cai, Wei & Guan, Guoyu & Pan, Rui & Zhu, Xuening & Wang, Hansheng, 2018. "Network linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 32-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li-Pang Chen, 2022. "Network-Based Discriminant Analysis for Multiclassification," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 410-431, November.
    2. Michael Fop & Pierre-Alexandre Mattei & Charles Bouveyron & Thomas Brendan Murphy, 2022. "Unobserved classes and extra variables in high-dimensional discriminant analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(1), pages 55-92, March.
    3. Li‐Pang Chen, 2024. "Estimation of Graphical Models: An Overview of Selected Topics," International Statistical Review, International Statistical Institute, vol. 92(2), pages 194-245, August.
    4. Li-Pang Chen & Grace Y. Yi & Qihuang Zhang & Wenqing He, 2019. "Multiclass analysis and prediction with network structured covariates," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-25, December.
    5. Miriam Aparicio, 2021. "Resiliency and Cooperation or Regarding Social and Collective Competencies for University Achievement. An Analysis from a Systemic Perspective," European Journal of Social Sciences Education and Research Articles, Revistia Research and Publishing, vol. 8, ejser_v8_.
    6. Yunpeng Zhao & Qing Pan & Chengan Du, 2019. "Logistic regression augmented community detection for network data with application in identifying autism‐related gene pathways," Biometrics, The International Biometric Society, vol. 75(1), pages 222-234, March.
    7. Wu, Han-Ming & Tien, Yin-Jing & Chen, Chun-houh, 2010. "GAP: A graphical environment for matrix visualization and cluster analysis," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 767-778, March.
    8. José E. Chacón, 2021. "Explicit Agreement Extremes for a 2 × 2 Table with Given Marginals," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 257-263, July.
    9. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    10. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    11. Irene Vrbik & Paul McNicholas, 2015. "Fractionally-Supervised Classification," Journal of Classification, Springer;The Classification Society, vol. 32(3), pages 359-381, October.
    12. Maurizio Vichi & Carlo Cavicchia & Patrick J. F. Groenen, 2022. "Hierarchical Means Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 553-577, November.
    13. Batool, Fatima & Hennig, Christian, 2021. "Clustering with the Average Silhouette Width," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    14. Patrick D. Shay & Stephen S. Farnsworth Mick, 2017. "Clustered and distinct: a taxonomy of local multihospital systems," Health Care Management Science, Springer, vol. 20(3), pages 303-315, September.
    15. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    16. Yue Wan & Jialu Wu & Tingjun Hou & Chang-Yu Hsieh & Xiaowei Jia, 2025. "Multi-channel learning for integrating structural hierarchies into context-dependent molecular representation," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    17. Wan-Lun Wang, 2019. "Mixture of multivariate t nonlinear mixed models for multiple longitudinal data with heterogeneity and missing values," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 196-222, March.
    18. Matthijs Warrens, 2010. "Inequalities Between Kappa and Kappa-Like Statistics for k×k Tables," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 176-185, March.
    19. Redivo, Edoardo & Nguyen, Hien D. & Gupta, Mayetri, 2020. "Bayesian clustering of skewed and multimodal data using geometric skewed normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    20. Jerzy Korzeniewski, 2016. "New Method Of Variable Selection For Binary Data Cluster Analysis," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 295-304, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0274440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.