IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v13y2019i3d10.1007_s11634-018-0341-2.html
   My bibliography  Save this article

Bayesian nonstationary Gaussian process models via treed process convolutions

Author

Listed:
  • Waley W. J. Liang

    (University of California)

  • Herbert K. H. Lee

    (University of California)

Abstract

The Gaussian process is a common model in a wide variety of applications, such as environmental modeling, computer experiments, and geology. Two major challenges often arise: First, assuming that the process of interest is stationary over the entire domain often proves to be untenable. Second, the traditional Gaussian process model formulation is computationally inefficient for large datasets. In this paper, we propose a new Gaussian process model to tackle these problems based on the convolution of a smoothing kernel with a partitioned latent process. Nonstationarity can be modeled by allowing a separate latent process for each partition, which approximates a regional clustering structure. Partitioning follows a binary tree generating process similar to that of Classification and Regression Trees. A Bayesian approach is used to estimate the partitioning structure and model parameters simultaneously. Our motivating dataset consists of 11918 precipitation anomalies. Results show that our model has promising prediction performance and is computationally efficient for large datasets.

Suggested Citation

  • Waley W. J. Liang & Herbert K. H. Lee, 2019. "Bayesian nonstationary Gaussian process models via treed process convolutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 797-818, September.
  • Handle: RePEc:spr:advdac:v:13:y:2019:i:3:d:10.1007_s11634-018-0341-2
    DOI: 10.1007/s11634-018-0341-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-018-0341-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-018-0341-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johns C.J. & Nychka D. & Kittel T.G.F. & Daly C., 2003. "Infilling Sparse Records of Spatial Fields," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 796-806, January.
    2. Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848, September.
    3. Taddy, Matthew A. & Gramacy, Robert B. & Polson, Nicholas G., 2011. "Dynamic Trees for Learning and Design," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 109-123.
    4. van Dyk, David A. & Park, Taeyoung, 2008. "Partially Collapsed Gibbs Samplers: Theory and Methods," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 790-796, June.
    5. Finley, Andrew O. & Sang, Huiyan & Banerjee, Sudipto & Gelfand, Alan E., 2009. "Improving the performance of predictive process modeling for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2873-2884, June.
    6. Kim, Hyoung-Moon & Mallick, Bani K. & Holmes, C.C., 2005. "Analyzing Nonstationary Spatial Data Using Piecewise Gaussian Processes," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 653-668, June.
    7. Noel Cressie & Gardar Johannesson, 2008. "Fixed rank kriging for very large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 209-226, February.
    8. Luke Bornn & Gavin Shaddick & James V. Zidek, 2012. "Modeling Nonstationary Processes Through Dimension Expansion," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 281-289, March.
    9. Finley, Andrew O. & Banerjee, Sudipto & Carlin, Bradley P., 2007. "spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i04).
    10. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    11. Gramacy, Robert B & Lee, Herbert K. H, 2008. "Bayesian Treed Gaussian Process Models With an Application to Computer Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1119-1130.
    12. Huiyan Sang & Jianhua Z. Huang, 2012. "A full scale approximation of covariance functions for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(1), pages 111-132, January.
    13. Gramacy, Robert B., 2007. "tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i09).
    14. Matthias Katzfuss, 2013. "Bayesian nonstationary spatial modeling for very large datasets," Environmetrics, John Wiley & Sons, Ltd., vol. 24(3), pages 189-200, May.
    15. Lemos, Ricardo T. & Sansó, Bruno, 2009. "A Spatio-Temporal Model for Mean, Anomaly, and Trend Fields of North Atlantic Sea Surface Temperature," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 5-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    2. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    3. Matthias Katzfuss, 2017. "A Multi-Resolution Approximation for Massive Spatial Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 201-214, January.
    4. Marcelo Cunha & Dani Gamerman & Montserrat Fuentes & Marina Paez, 2017. "A non-stationary spatial model for temperature interpolation applied to the state of Rio de Janeiro," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 919-939, November.
    5. Monterrubio-Gómez, Karla & Roininen, Lassi & Wade, Sara & Damoulas, Theodoros & Girolami, Mark, 2020. "Posterior inference for sparse hierarchical non-stationary models," Computational Statistics & Data Analysis, Elsevier, vol. 148(C).
    6. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    7. Mahdi Hosseinpouri & Majid Jafari Khaledi, 2019. "An area-specific stick breaking process for spatial data," Statistical Papers, Springer, vol. 60(1), pages 199-221, February.
    8. Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
    9. Cole, D. Austin & Gramacy, Robert B. & Ludkovski, Mike, 2022. "Large-scale local surrogate modeling of stochastic simulation experiments," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    10. Bledar A. Konomi & Emily L. Kang & Ayat Almomani & Jonathan Hobbs, 2023. "Bayesian Latent Variable Co-kriging Model in Remote Sensing for Quality Flagged Observations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 423-441, September.
    11. Paciorek, Christopher J. & Lipshitz, Benjamin & Zhuo, Wei & Prabhat, . & Kaufman, Cari G. G. & Thomas, Rollin C., 2015. "Parallelizing Gaussian Process Calculations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i10).
    12. Shinichiro Shirota & Andrew O. Finley & Bruce D. Cook & Sudipto Banerjee, 2023. "Conjugate sparse plus low rank models for efficient Bayesian interpolation of large spatial data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    13. Peter A. Gao & Hannah M. Director & Cecilia M. Bitz & Adrian E. Raftery, 2022. "Probabilistic Forecasts of Arctic Sea Ice Thickness," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 280-302, June.
    14. Lyndsay Shand & Bo Li, 2017. "Modeling nonstationarity in space and time," Biometrics, The International Biometric Society, vol. 73(3), pages 759-768, September.
    15. Ryan J. Parker & Brian J. Reich & Jo Eidsvik, 2016. "A Fused Lasso Approach to Nonstationary Spatial Covariance Estimation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 569-587, September.
    16. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    17. Ranadeep Daw & Christopher K. Wikle, 2023. "REDS: Random ensemble deep spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    18. Marco H. Benedetti & Veronica J. Berrocal & Naveen N. Narisetty, 2022. "Identifying regions of inhomogeneities in spatial processes via an M‐RA and mixture priors," Biometrics, The International Biometric Society, vol. 78(2), pages 798-811, June.
    19. Kelly R. Moran & Matthew W. Wheeler, 2022. "Fast increased fidelity samplers for approximate Bayesian Gaussian process regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1198-1228, September.
    20. Jonathan Bradley & Noel Cressie & Tao Shi, 2015. "Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 1-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:13:y:2019:i:3:d:10.1007_s11634-018-0341-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.