Modern Approaches To Forecasting Firm Default Rates Over The Short To Medium Term: An Application To A Panel Of Polish Companies
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2020. "Corporate Default Predictions Using Machine Learning: Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-11, August.
- Jones, Stewart & Hensher, David A., 2007. "Modelling corporate failure: A multinomial nested logit analysis for unordered outcomes," The British Accounting Review, Elsevier, vol. 39(1), pages 89-107.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
- Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
- B Baesens & T Van Gestel & S Viaene & M Stepanova & J Suykens & J Vanthienen, 2003. "Benchmarking state-of-the-art classification algorithms for credit scoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 627-635, June.
- Yu, Baojun & Li, Changming & Mirza, Nawazish & Umar, Muhammad, 2022. "Forecasting credit ratings of decarbonized firms: Comparative assessment of machine learning models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
- Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Bellotti, Tony & Crook, Jonathan, 2013. "Forecasting and stress testing credit card default using dynamic models," International Journal of Forecasting, Elsevier, vol. 29(4), pages 563-574.
- Anton Gerunov, 2020. "Binary Classification Problems in Economics and 136 Different Ways to Solve Them," Bulgarian Economic Papers bep-2020-02, Faculty of Economics and Business Administration, Sofia University St Kliment Ohridski - Bulgaria // Center for Economic Theories and Policies at Sofia University St Kliment Ohridski, revised Mar 2020.
- Gogas, Periklis & Papadimitriou, Theophilos & Agrapetidou, Anna, 2018. "Forecasting bank failures and stress testing: A machine learning approach," International Journal of Forecasting, Elsevier, vol. 34(3), pages 440-455.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
- Salwa Kessioui & Michalis Doumpos & Constantin Zopounidis, 2023. "A Bibliometric Overview of the State-of-the-Art in Bankruptcy Prediction Methods and Applications," World Scientific Book Chapters, in: Emilios Galariotis & Alexandros Garefalakis & Christos Lemonakis & Marios Menexiadis & Constantin Zo (ed.), Governance and Financial Performance Current Trends and Perspectives, chapter 6, pages 123-153, World Scientific Publishing Co. Pte. Ltd..
- Alessandro Bitetto & Stefano Filomeni & Michele Modina, 2021. "Understanding corporate default using Random Forest: The role of accounting and market information," DEM Working Papers Series 205, University of Pavia, Department of Economics and Management.
- Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
- Jie Sun, 2012. "Integration Of Random Sample Selection, Support Vector Machines And Ensembles For Financial Risk Forecasting With An Empirical Analysis On The Necessity Of Feature Selection," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(4), pages 229-246, October.
- Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2022. "Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1231-1249, March.
- Citterio, Alberto, 2024. "Bank failure prediction models: Review and outlook," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
- Li Xian Liu & Shuangzhe Liu & Milind Sathye, 2021. "Predicting Bank Failures: A Synthesis of Literature and Directions for Future Research," JRFM, MDPI, vol. 14(10), pages 1-24, October.
- Alberto Tron & Maurizio Dallocchio & Salvatore Ferri & Federico Colantoni, 2023. "Corporate governance and financial distress: lessons learned from an unconventional approach," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(2), pages 425-456, June.
- Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.
- Zhao, Qi & Xu, Weijun & Ji, Yucheng, 2023. "Predicting financial distress of Chinese listed companies using machine learning: To what extent does textual disclosure matter?," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
- Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
- Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
- Guido Max Mantovani & Gregory Gadzinski, 2022. "How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts," JRFM, MDPI, vol. 15(11), pages 1-18, October.
- Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
- Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
- Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
- Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
- Le, Hong Hanh & Viviani, Jean-Laurent, 2018.
"Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios,"
Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
- Hong Hanh Le & Jean-Laurent Viviani, 2018. "Predicting bank failure: An improvement by implementing machine learning approach on classical financial ratios," Post-Print halshs-01615106, HAL.
More about this item
Keywords
forecasting; default rate; bankruptcy; machine learning.;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sko:yrbook:v:22:y:2023:i:1:p:5-15. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Prof. Teodor Sedlarski (email available below). General contact details of provider: https://edirc.repec.org/data/fesofbg.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.