Accident analysis and risk prediction of tank farm based on Bayesian network method
Author
Abstract
Suggested Citation
DOI: 10.1177/1748006X221139906
Download full text from publisher
References listed on IDEAS
- Lam, C.Y. & Tai, K., 2020. "Network topological approach to modeling accident causations and characteristics: Analysis of railway incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Lauritzen, Steffen L., 1995. "The EM algorithm for graphical association models with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 19(2), pages 191-201, February.
- Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
- Hou, Lei & Wu, Xingguang & Wu, Zhuang & Wu, Shouzhi, 2020. "Pattern identification and risk prediction of domino effect based on data mining methods for accidents occurred in the tank farm," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Lam, C.Y. & Cruz, A.M., 2019. "Risk analysis for consumer-level utility gas and liquefied petroleum gas incidents using probabilistic network modeling: A case study of gas incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 198-212.
- Byun, Ji-Eun & Song, Junho, 2021. "A general framework of Bayesian network for system reliability analysis using junction tree," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Zhang, Hengqi & Geng, Hua, 2023. "A methodology to identify and assess high-risk causes for electrical personal accidents based on directed weighted CN," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Kuroda, Masahiro & Sakakihara, Michio & Geng, Zhi, 2008. "Acceleration of the EM and ECM algorithms using the Aitken [delta]2 method for log-linear models with partially classified data," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2332-2338, October.
- Chen, Yen-Liang & Hu, Hui-Ling, 2006. "An overlapping cluster algorithm to provide non-exhaustive clustering," European Journal of Operational Research, Elsevier, vol. 173(3), pages 762-780, September.
- Wang, Rongxi & Li, Yufan & Xu, Jinjin & Wang, Zhen & Gao, Jianmin, 2022. "F2G: A hybrid fault-function graphical model for reliability analysis of complex equipment with coupled faults," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Casualty analysis methodology and taxonomy for FPSO accident analysis," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Ma, Weikai & Wang, Yanfu & Xing, Peijie & Yang, Ming, 2025. "A Monte Carlo-based modeling method for the spatial-temporal evolution process of multi-hazard and higher-order domino effect," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
- Croft, J. & Smith, J. Q., 2003. "Discrete mixtures in Bayesian networks with hidden variables: a latent time budget example," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 539-547, January.
- Jia, Rui & Du, Kun & Song, Zhigang & Xu, Wei & Zheng, Feifei, 2024. "Scenario reduction-based simulation method for efficient serviceability assessment of earthquake-damaged water distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
- Suo Qi & Wang Liyuan & Yao Tianzi & Wang Zihao, 2021. "Promoting Metro Operation Safety by Exploring Metro Operation Accident Network," Journal of Systems Science and Information, De Gruyter, vol. 9(4), pages 455-468, August.
- Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
- Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Mousavi, Milad & Shen, Xuesong & Zhang, Zhigang & Barati, Khalegh & Li, Binghao, 2025. "IoT-Bayes fusion: Advancing real-time environmental safety risk monitoring in underground mining and construction," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
- Xie, Shuyi & Huang, Zimeng & Wu, Gang & Luo, Jinheng & Li, Lifeng & Ma, Weifeng & Wang, Bohong, 2024. "Combining precursor and Cloud Leaky noisy-OR logic gate Bayesian network for dynamic probability analysis of major accidents in the oil depots," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Fazia Abdat & Sylvie Leclercq & Xavier Cuny & Claire Tissot, 2014. "Extracting recurrent scenarios from narrative texts using a Bayesian network: Application to serious occupational accidents with movement disturbance," Post-Print hal-01578382, HAL.
- IAIANI, Matteo & TUGNOLI, Alessandro & BONVICINI, Sarah & COZZANI, Valerio, 2021. "Analysis of Cybersecurity-related Incidents in the Process Industry," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
- Arentze, Theo & Timmermans, Harry, 2009. "Regimes in social-cultural events-driven activity sequences: Modelling approach and empirical application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 311-322, May.
More about this item
Keywords
Cause-effect relationship; Bayesian network; accident analysis; dynamic prediction; tank farm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:2:p:366-386. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.