IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i2p332-354.html
   My bibliography  Save this article

Risk-informed control systems for improved operational performance and decision-making

Author

Listed:
  • Christoph A Thieme
  • Børge Rokseth
  • Ingrid B Utne

Abstract

Autonomous systems, including airborne, land-based, marine, and underwater vehicles, are increasingly present in the world. One important aspect of autonomy is the capability to process information and to make independent decisions for achieving a mission goal. Information on the level of risk related to the operation may improve the decision-making process of autonomous systems. This article describes the integration of risk analysis methods with the control system of autonomous and highly automated systems that are evaluated during operation. Four main areas of implementation are identified; (i) risk models used to directly make decisions, (ii) use of the output of risk models as input to decision-making and optimization algorithms, (iii) the output of risk models may be used as a constraint in or modifying constraints of algorithms, and (iv) the output of risk models may be used to inform representations or maps of the environment to be used in path planning. A case study on a dynamic positioning controller of an offshore supply vessel exemplifies the concepts described in this article. In addition, it demonstrates how risk model output may be used within a hybrid controller.

Suggested Citation

  • Christoph A Thieme & Børge Rokseth & Ingrid B Utne, 2023. "Risk-informed control systems for improved operational performance and decision-making," Journal of Risk and Reliability, , vol. 237(2), pages 332-354, April.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:2:p:332-354
    DOI: 10.1177/1748006X211043657
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X211043657
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X211043657?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sophie Wintersberger & Muhammad Azmat & Sebastian Kummer, 2019. "Are We Ready to Ride Autonomous Vehicles? A Pilot Study on Austrian Consumers’ Perspective," Logistics, MDPI, vol. 3(4), pages 1-20, September.
    2. Rokseth, Børge & Utne, Ingrid Bouwer & Vinnem, Jan Erik, 2018. "Deriving verification objectives and scenarios for maritime systems using the systems-theoretic process analysis," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 18-31.
    3. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    4. Aven, Terje, 2010. "On how to define, understand and describe risk," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 623-631.
    5. Aven, Terje, 2012. "The risk concept—historical and recent development trends," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 33-44.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aven, Terje, 2013. "A conceptual framework for linking risk and the elements of the data–information–knowledge–wisdom (DIKW) hierarchy," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 30-36.
    2. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    3. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    4. Aven, Terje, 2020. "Three influential risk foundation papers from the 80s and 90s: Are they still state-of-the-art?," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Inger Lise Johansen & Marvin Rausand, 2014. "Defining complexity for risk assessment of sociotechnical systems: A conceptual framework," Journal of Risk and Reliability, , vol. 228(3), pages 272-290, June.
    6. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    7. Henrik Hassel & Alexander Cedergren, 2019. "Exploring the Conceptual Foundation of Continuity Management in the Context of Societal Safety," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1503-1519, July.
    8. Fan, Cunlong & Montewka, Jakub & Zhang, Di, 2022. "A risk comparison framework for autonomous ships navigation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Thomas Ying‐Jeh Chen & Valerie Nicole Washington & Terje Aven & Seth David Guikema, 2020. "Review and Evaluation of the J100‐10 Risk and Resilience Management Standard for Water and Wastewater Systems," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 608-623, March.
    10. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2018. "Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 209-224.
    11. Hu, Lunhu & Kang, Rui & Pan, Xing & Zuo, Dujun, 2020. "Risk assessment of uncertain random system—Level-1 and level-2 joint propagation of uncertainty and probability in fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    12. Veland, H. & Aven, T., 2013. "Risk communication in the light of different risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 34-40.
    13. Dariusz Szmel & Wiesław Zabłocki & Przemysław Ilczuk & Andrzej Kochan, 2019. "Method for Selecting the Safety Integrity Level for the Control-Command and Signaling Functions," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    14. Aven, Terje, 2018. "Perspectives on the nexus between good risk communication and high scientific risk analysis quality," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 290-296.
    15. Mostafa Aliyari & Yonas Z Ayele & Abbas Barabadi & Enrique Lopez Droguett, 2019. "Risk analysis in low-voltage distribution systems," Journal of Risk and Reliability, , vol. 233(2), pages 118-138, April.
    16. Victor Bolbot & Gerasimos Theotokatos & LA Wennersberg & Jerome Faivre & Dracos Vassalos & Evangelos Boulougouris & Ørnulf Jan Rødseth & Pål Andersen & Ann-Sofie Pauwelyn & Antoon Van Coillie, 2023. "A novel risk assessment process: Application to an autonomous inland waterways ship," Journal of Risk and Reliability, , vol. 237(2), pages 436-458, April.
    17. Peter Blokland & Genserik Reniers, 2019. "An Ontological and Semantic Foundation for Safety and Security Science," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
    18. Wan, Chengpeng & Yan, Xinping & Zhang, Di & Qu, Zhuohua & Yang, Zaili, 2019. "An advanced fuzzy Bayesian-based FMEA approach for assessing maritime supply chain risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 222-240.
    19. Garcez, Thalles Vitelli & de Almeida, Adiel Teixeira, 2014. "A risk measurement tool for an underground electricity distribution system considering the consequences and uncertainties of manhole events," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 68-80.
    20. Henning Veland & Øystein Amundrud & Terje Aven, 2013. "Foundational issues in relation to national risk assessment methodologies," Journal of Risk and Reliability, , vol. 227(3), pages 348-358, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:2:p:332-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.