IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v234y2020i5p664-675.html
   My bibliography  Save this article

A non-probabilistic time-variant method for structural reliability analysis

Author

Listed:
  • Tengda Xin
  • Jiguang Zhao
  • Cunyan Cui
  • Yongsheng Duan

Abstract

Time-variant reliability problems commonly occur in practical engineering due to the deterioration in material properties, external disturbance and other uncertain factors. Considering the non-probabilistic method can effectively deal with the uncertainties in reliability analysis. Based on the stress–strength interference method and interval method, a time-variant stress–strength interference interval model is established by considering the stress and strength as time-variant intervals. And then, the stress and strength intervals are converted into the normalized intervals to define the non-probabilistic time-variant reliability index η according to the different relationships between the limit state function and the normalized intervals. The structural state at any time can be described by the non-probabilistic time-variant reliability index η ∈ [ 0 , + ∞ ) . In addition, a strength power exponential degradation model is given as an example to clearly verify the non-probabilistic time-variant method, and the analysis results are compared with the interval method, the uniform distribution stress–strength interference method and the normal distribution stress–strength interference method, which confirm that the non-probabilistic time-variant method is feasible and valid to analyze the structural time-variant reliability without the probability density functions of the parameters.

Suggested Citation

  • Tengda Xin & Jiguang Zhao & Cunyan Cui & Yongsheng Duan, 2020. "A non-probabilistic time-variant method for structural reliability analysis," Journal of Risk and Reliability, , vol. 234(5), pages 664-675, October.
  • Handle: RePEc:sae:risrel:v:234:y:2020:i:5:p:664-675
    DOI: 10.1177/1748006X20928196
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X20928196
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X20928196?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zequn & Chen, Wei, 2016. "Time-variant reliability assessment through equivalent stochastic process transformation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 166-175.
    2. An, Zong-Wen & Huang, Hong-Zhong & Liu, Yu, 2008. "A discrete stress–strength interference model based on universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1485-1490.
    3. Zhang, Xiaoqiang & Gao, Huiying & Huang, Hong-Zhong & Li, Yan-Feng & Mi, Jinhua, 2018. "Dynamic reliability modeling for system analysis under complex load," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 345-351.
    4. Peng, Yizhen & Wang, Yu & Zi, YanYang & Tsui, Kwok-Leung & Zhang, Chuhua, 2017. "Dynamic reliability assessment and prediction for repairable systems with interval-censored data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 301-309.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan-Jian Yang & Ya-Lan Xiong & Xin-Yin Zhang & Gui-Hua Wang & Bihai Zou, 2022. "Reliability analysis of continuous emission monitoring system with common cause failure based on fuzzy FMECA and Bayesian networks," Annals of Operations Research, Springer, vol. 311(1), pages 451-467, April.
    2. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Dong Lyu & Shubin Si & Zhiqiang Cai & Liyang Xie, 2020. "Computational method for importance measure of the k-out-of-n system based on stress–strength interference," Journal of Risk and Reliability, , vol. 234(1), pages 27-40, February.
    4. Das, Sourav & Tesfamariam, Solomon, 2024. "Reliability assessment of stochastic dynamical systems using physics informed neural network based PDEM," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Xiao, Hui & Shi, Daimin & Ding, Yi & Peng, Rui, 2016. "Optimal loading and protection of multi-state systems considering performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 88-95.
    6. Serkan Eryılmaz, 2011. "A new perspective to stress–strength models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 101-115, February.
    7. Zhang, Yang & Xu, Jun & Gardoni, Paolo, 2024. "A loading contribution degree analysis-based strategy for time-variant reliability analysis of structures under multiple loading stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Wang, Zhonglai & Liu, Jing & Yu, Shui, 2020. "Time-variant reliability prediction for dynamic systems using partial information," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2024. "A Subdomain uncertainty-guided Kriging method with optimized feasibility metric for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Jiang, Chen & Yan, Yifang & Wang, Dapeng & Qiu, Haobo & Gao, Liang, 2021. "Global and local Kriging limit state approximation for time-dependent reliability-based design optimization through wrong-classification probability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    11. Subramanian, Abhinav & Mahadevan, Sankaran, 2022. "Importance sampling for probabilistic prognosis of sector-wide flight separation safety," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    12. Yan Shi & Zhenzhou Lu & Ruyang He, 2020. "Advanced time-dependent reliability analysis based on adaptive sampling region with Kriging model," Journal of Risk and Reliability, , vol. 234(4), pages 588-600, August.
    13. Zhou, Di & Pan, Ershun & Zhang, Xufang & Zhang, Yimin, 2020. "Dynamic Model-based Saddle-point Approximation for Reliability and Reliability-based Sensitivity Analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    14. Ye, Kewei & Wang, Han & Ma, Xiaobing, 2023. "A generalized dynamic stress-strength interference model under δ-failure criterion for self-healing protective structure," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    15. Ossai, Chinedu I., 2019. "Remaining useful life estimation for repairable multi-state components subjected to multiple maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 142-151.
    16. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    17. Zhang, Kun & Chen, Ning & Zeng, Peng & Liu, Jian & Beer, Michael, 2022. "An efficient reliability analysis method for structures with hybrid time-dependent uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    18. Ma, Ye & Chi, Yuanying & Wu, Di & Peng, Rui & Wu, Shaomin, 2021. "Reliability of integrated electricity and gas supply system with performance substitution and sharing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    19. Yang, Seonghyeok & Jo, Hwisang & Lee, Kyungeun & Lee, Ikjin, 2022. "Expected system improvement (ESI): A new learning function for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    20. Yizhen, Peng & Yu, Wang & Jingsong, Xie & Yanyang, Zi, 2020. "Adaptive stochastic-filter-based failure prediction model for complex repairable systems under uncertainty conditions," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:234:y:2020:i:5:p:664-675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.