IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v231y2017i2p146-154.html
   My bibliography  Save this article

Reliability and sensitivity analysis for a banking company transmission system

Author

Listed:
  • Yi-Kuei Lin
  • Hsien-Chang Chou
  • Ping-Chen Chang

Abstract

This article studies a case of the banking company in Taiwan to measure the service performance by adopting reliability analysis. The service performance focuses on sending transaction data from one source (headquarters) to multiple sinks (bank branches) for a banking company transmission system. A stochastic flow network consisting of edges (transmission lines) and nodes (Internet data center or bank branches) is constructed to model such a computer system. The service-level agreement is a contract that requirements should be promised by the Internet service provider. Also, the bank needs to satisfy the customers’ requirements through the banking company transmission system. System reliability, which is defined as the probability of demand satisfaction, is studied as a key performance indicator for measuring service level of the banking company transmission system. Subsequently, sensitivity analysis is adopted to investigate the key transmission line that affects the system reliability most significantly. The system supervisor can make a decision for banking company transmission system to enhance the important edges for improving system reliability.

Suggested Citation

  • Yi-Kuei Lin & Hsien-Chang Chou & Ping-Chen Chang, 2017. "Reliability and sensitivity analysis for a banking company transmission system," Journal of Risk and Reliability, , vol. 231(2), pages 146-154, April.
  • Handle: RePEc:sae:risrel:v:231:y:2017:i:2:p:146-154
    DOI: 10.1177/1748006X16689540
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X16689540
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X16689540?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    2. Joseph C. Hudson & Kailash C. Kapur, 1985. "Reliability Bounds for Multistate Systems with Multistate Components," Operations Research, INFORMS, vol. 33(1), pages 153-160, February.
    3. Yi‐Kuei Lin & Ping‐Chen Chang, 2012. "Evaluation of system reliability for a cloud computing system with imperfect nodes," Systems Engineering, John Wiley & Sons, vol. 15(1), pages 83-94, March.
    4. E. Grigoroudis & E. Tsitsiridi & C. Zopounidis, 2013. "Linking customer satisfaction, employee appraisal, and business performance: an evaluation methodology in the banking sector," Annals of Operations Research, Springer, vol. 205(1), pages 5-27, May.
    5. Ramirez-Marquez, Jose Emmanuel & Coit, David W., 2007. "Multi-state component criticality analysis for reliability improvement in multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1608-1619.
    6. Jane, Chin-Chia, 2011. "Performance evaluation of logistics systems under cost and reliability considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 130-137, March.
    7. Fernando A. F. Ferreira & Sérgio P. Santos & Paulo M. M. Rodrigues & Ronald W. Spahr, 2014. "Evaluating retail banking service quality and convenience with MCDA techniques: a case study at the bank branch level," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(1), pages 1-21, February.
    8. Chin‐Chia Jane & Yih‐Wenn Laih, 2012. "Evaluating cost and reliability integrated performance of stochastic logistics systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(7), pages 577-586, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yi-Kuei & Fiondella, Lance & Chang, Ping-Chen, 2013. "Quantifying the impact of correlated failures on system reliability by a simulation approach," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 32-40.
    2. Lin, Yi-Kuei & Huang, Cheng-Fu & Chang, Ping-Chen, 2013. "System reliability evaluation of a touch panel manufacturing system with defect rate and reworking," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 51-60.
    3. Xiu-Zhen Xu & Yi-Feng Niu & Qing Li, 2019. "Efficient Enumeration of - Minimal Paths in Reliability Evaluation of Multistate Networks," Complexity, Hindawi, vol. 2019, pages 1-10, March.
    4. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    5. Aliasghar Aliakbarzadeh & Akbar Alem Tabriz, 2014. "Performance Evaluation and Ranking the Branches of Bank using FAHP and TOPSIS Case study: Tose Asr Shomal Interest-free Loan Fund," International Journal of Academic Research in Business and Social Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Business and Social Sciences, vol. 4(12), pages 199-217, December.
    6. Panagiotis Mitropoulos & Ioannis Mitropoulos, 2020. "Performance evaluation of retail banking services: Is there a trade‐off between production and quality?," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(7), pages 1237-1250, October.
    7. Lin, Yi-Kuei & Huang, Ding-Hsiang, 2020. "Reliability analysis for a hybrid flow shop with due date consideration," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    8. Niu, Yi-Feng & Zhao, Xia & Xu, Xiu-Zhen & Zhang, Shi-Yun, 2023. "Reliability assessment of a stochastic-flow distribution network with carbon emission constraint," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Niu, Yi-Feng, 2021. "Performance measure of a multi-state flow network under reliability and maintenance cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Zakariah, Sahidah & Pyeman, Jaafar, 2013. "Current State and Issues of Logistics Cost Accounting and Management in Malaysia," MPRA Paper 46605, University Library of Munich, Germany.
    11. Carayannis, Elias G. & Ferreira, Fernando A.F. & Bento, Paulo & Ferreira, João J.M. & Jalali, Marjan S. & Fernandes, Bernardo M.Q., 2018. "Developing a socio-technical evaluation index for tourist destination competitiveness using cognitive mapping and MCDA," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 147-158.
    12. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    13. Yeh, Wei-Chang & Bae, Changseok & Huang, Chia-Ling, 2015. "A new cut-based algorithm for the multi-state flow network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 1-7.
    14. Lin, Yi-Kuei, 2010. "Calculation of minimal capacity vectors through k minimal paths under budget and time constraints," European Journal of Operational Research, Elsevier, vol. 200(1), pages 160-169, January.
    15. Feng Li & Zhi-Ping Fan & Bing-Bing Cao & Xin Li, 2020. "Logistics Service Mode Selection for Last Mile Delivery: An Analysis Method Considering Customer Utility and Delivery Service Cost," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    16. Thi-Phuong Nguyen, 2022. "Evaluation of network reliability for stochastic-flow air transportation network considering discounted fares from airlines," Annals of Operations Research, Springer, vol. 311(1), pages 335-355, April.
    17. Bai, Guanghan & Zuo, Ming J. & Tian, Zhigang, 2015. "Search for all d-MPs for all d levels in multistate two-terminal networks," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 300-309.
    18. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.
    19. Huseby, Arne B. & Natvig, Bent, 2013. "Discrete event simulation methods applied to advanced importance measures of repairable components in multistate network flow systems," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 186-198.
    20. M. A. Raayatpanah & P. M. Pardalos, 2018. "Reliability evaluation of a multicast over coded packet networks," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 921-940, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:231:y:2017:i:2:p:146-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.