IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832023007901.html
   My bibliography  Save this article

A new hybrid inequality BAT for comprehensive all-level d-MP identification using minimal paths in Multistate Flow Network reliability analysis

Author

Listed:
  • Yeh, Wei-Chang

Abstract

In various network applications like wireless sensors, utilities, IoT, and transport systems, multistate flow networks (MFNs) serve as valuable models. A d-level minimal path (d-MP) is a unique type of MFN characterized by having a maximum flow of d without any redundant arcs. Assessing MFN reliability is critical and often relies on the d-MP algorithm, a foundational method for calculating reliability. Existing d-MP algorithms, however, lack the capability to concurrently identify all-level d-MPs. We propose a novel algorithm, the Hybrid Inequality Binary-Addition-Tree (IBAT), which overcomes existing limitations by concurrently discovering all-level d-MPs (decision-making points), thus enabling more informed decision-making. This hybrid IBAT combines the IBAT with several key techniques: the path-based layered-search algorithm (PLSA), sequential verification, the MP-to-arc state transformation, the cycle test, and the logarithmic prime pairwise comparison method (LPM). In contrast to existing methods, our BAT-based approach consistently showcases superior performance in the parallelized retrieval of all-level d-MPs, as substantiated through experiments conducted on 12 benchmark MFNs. Compared to existing methods, our BAT-based approach demonstrates superior performance in parallelized retrieval of all-level d-MPs in the execution times in discovering d-MPs across all levels, as validated by experiments on 12 benchmark MFNs.

Suggested Citation

  • Yeh, Wei-Chang, 2024. "A new hybrid inequality BAT for comprehensive all-level d-MP identification using minimal paths in Multistate Flow Network reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832023007901
    DOI: 10.1016/j.ress.2023.109876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007901
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832023007901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.