IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v229y2015i1p52-61.html
   My bibliography  Save this article

Storage battery remaining useful life prognosis using improved unscented particle filter

Author

Listed:
  • Limin Li
  • Zhongsheng Wang
  • Hongkai Jiang

Abstract

Storage battery is one of the most important power sources in portable devices, marine systems, automotive vehicles, aerospace systems, and so on. For this kind of battery, it is essential to prognose its remaining useful life before its end of life, which would reduce some unnecessary sudden disasters caused by battery failure. In this article, we propose an improved unscented particle filter method for prognosing the remaining useful life of storage battery, in which the sigma samples of unscented transformation in traditional unscented particle filter are generated by singular value decomposition, and then, those sigma points are propagated by the standard unscented Kalman filter to generate a sophisticated proposal distribution. When both improved unscented particle filter and unscented particle filter methods were used for prognosing the remaining useful life of storage battery, it shows that the performance of improved unscented particle filter is better than unscented particle filter; the proposed method is more robust in remaining useful life prognosis procedure.

Suggested Citation

  • Limin Li & Zhongsheng Wang & Hongkai Jiang, 2015. "Storage battery remaining useful life prognosis using improved unscented particle filter," Journal of Risk and Reliability, , vol. 229(1), pages 52-61, February.
  • Handle: RePEc:sae:risrel:v:229:y:2015:i:1:p:52-61
    DOI: 10.1177/1748006X14550662
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X14550662
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X14550662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
    2. Zio, Enrico & Peloni, Giovanni, 2011. "Particle filtering prognostic estimation of the remaining useful life of nonlinear components," Reliability Engineering and System Safety, Elsevier, vol. 96(3), pages 403-409.
    3. Zhiwei He & Mingyu Gao & Caisheng Wang & Leyi Wang & Yuanyuan Liu, 2013. "Adaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model," Energies, MDPI, vol. 6(8), pages 1-18, August.
    4. Kun Chen & Kung‐Sik Chan & Nils Chr. Stenseth, 2012. "Reduced rank stochastic regression with a sparse singular value decomposition," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(2), pages 203-221, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    2. Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
    3. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    4. Wang, Zhaoqiang & Hu, Changhua & Wang, Wenbin & Zhou, Zhijie & Si, Xiaosheng, 2014. "A case study of remaining storage life prediction using stochastic filtering with the influence of condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 186-195.
    5. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    6. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    7. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    8. Xiangang Cao & Pengfei Li & Song Ming, 2021. "Remaining Useful Life Prediction-Based Maintenance Decision Model for Stochastic Deterioration Equipment under Data-Driven," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
    9. Tianyu Liu & Zhengqiang Pan & Quan Sun & Jing Feng & Yanzhen Tang, 2017. "Residual useful life estimation for products with two performance characteristics based on a bivariate Wiener process," Journal of Risk and Reliability, , vol. 231(1), pages 69-80, February.
    10. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Bizhong Xia & Wenhui Zheng & Ruifeng Zhang & Zizhou Lao & Zhen Sun, 2017. "A Novel Observer for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(8), pages 1-20, August.
    12. Pradeep Kundu & Makarand S.Kulkarni & Ashish K.Darpe, 2023. "A hybrid prognosis approach for life prediction of gears subjected to progressive pitting failure mode," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1325-1346, March.
    13. Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
    14. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    15. Fang, Xiaolei & Zhou, Rensheng & Gebraeel, Nagi, 2015. "An adaptive functional regression-based prognostic model for applications with missing data," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 266-274.
    16. Feng, Sanying & Lian, Heng & Zhu, Fukang, 2016. "Reduced rank regression with possibly non-smooth criterion functions: An empirical likelihood approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 139-150.
    17. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    18. Yawei Hu & Shujie Liu & Huitian Lu & Hongchao Zhang, 2018. "Online remaining useful life prognostics using an integrated particle filter," Journal of Risk and Reliability, , vol. 232(6), pages 587-597, December.
    19. Fan, Jiajie & Yung, Kam-Chuen & Pecht, Michael, 2014. "Prognostics of lumen maintenance for High power white light emitting diodes using a nonlinear filter-based approach," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 63-72.
    20. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:229:y:2015:i:1:p:52-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.