IDEAS home Printed from https://ideas.repec.org/a/sae/medema/v37y2017i4p367-376.html

Bayesian Solutions for Handling Uncertainty in Survival Extrapolation

Author

Listed:
  • Miguel A. Negrín
  • Julian Nam
  • Andrew H. Briggs

Abstract

Objective . Survival extrapolation using a single, best-fit model ignores 2 sources of model uncertainty: uncertainty in the true underlying distribution and uncertainty about the stability of the model parameters over time. Bayesian model averaging (BMA) has been used to account for the former, but it can also account for the latter. We investigated BMA using a published comparison of the Charnley and Spectron hip prostheses using the original 8-year follow-up registry data. Methods . A wide variety of alternative distributions were fitted. Two additional distributions were used to address uncertainty about parameter stability: optimistic and skeptical. The optimistic (skeptical) model represented the model distribution with the highest (lowest) estimated probabilities of survival but reestimated using, as prior information, the most optimistic (skeptical) parameter estimated for intermediate follow-up periods. Distributions were then averaged assuming the same posterior probabilities for the optimistic, skeptical, and noninformative models. Cost-effectiveness was compared using both the original 8-year and extended 16-year follow-up data. Results . We found that all models obtained similar revision-free years during the observed period. In contrast, there was variability over the decision time horizon. Over the observed period, we detected considerable uncertainty in the shape parameter for Spectron. After BMA, Spectron was cost-effective at a threshold of £20,000 with 93% probability, whereas the best-fit model was 100%; by contrast, with a 16-year follow-up, it was 0%. Conclusions . This case study casts doubt on the ability of the single best-fit model selected by information criteria statistics to adequately capture model uncertainty. Under this scenario, BMA weighted by posterior probabilities better addressed model uncertainty. However, there is still value in regularly updating health economic models, even where decision uncertainty is low.

Suggested Citation

  • Miguel A. Negrín & Julian Nam & Andrew H. Briggs, 2017. "Bayesian Solutions for Handling Uncertainty in Survival Extrapolation," Medical Decision Making, , vol. 37(4), pages 367-376, May.
  • Handle: RePEc:sae:medema:v:37:y:2017:i:4:p:367-376
    DOI: 10.1177/0272989X16650669
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0272989X16650669
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0272989X16650669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Caterina Conigliani, 2008. "A bayesian model averaging approach with non-informative priors for cost-effectiveness analyses in health economics," Departmental Working Papers of Economics - University 'Roma Tre' 0094, Department of Economics - University Roma Tre.
    2. Christopher H. Jackson & Linda D. Sharples & Simon G. Thompson, 2010. "Structural and parameter uncertainty in Bayesian cost‐effectiveness models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 233-253, March.
    3. Caterina Conigliani & Andrea Tancredi, 2009. "A Bayesian model averaging approach for cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 18(7), pages 807-821, July.
    4. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel A. Negrín & Francisco J. Vázquez-Polo & María Martel & Elías Moreno & Francisco J. Girón, 2010. "Bayesian Variable Selection in Cost-Effectiveness Analysis," IJERPH, MDPI, vol. 7(4), pages 1-20, April.
    2. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    3. Ivana Lolić & Petar Sorić & Marija Logarušić, 2022. "Economic Policy Uncertainty Index Meets Ensemble Learning," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 401-437, August.
    4. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    5. Messner, Wolfgang, 2023. "The contingency impact of culture on health security capacities for pandemic preparedness: A moderated Bayesian inference analysis," Journal of International Management, Elsevier, vol. 29(5).
    6. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    7. Alexandra Ferreira‐Lopes & Pedro Linhares & Luís Filipe Martins & Tiago Neves Sequeira, 2022. "Quantitative easing and economic growth in Japan: A meta‐analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 235-268, February.
    8. Davide Fiaschi & Andrea Mario Lavezzi & Angela Parenti, 2020. "Deep and Proximate Determinants of the World Income Distribution," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 66(3), pages 677-710, September.
    9. Zhang, Xiang & Saelens, Dirk & Roels, Staf, 2022. "Estimating dynamic solar gains from on-site measured data: An ARX modelling approach," Applied Energy, Elsevier, vol. 321(C).
    10. Matthew W. Wheeler & Jose Cortiñas Abrahantes & Marc Aerts & Jeffery S. Gift & Jerry Allen Davis, 2022. "Continuous model averaging for benchmark dose analysis: Averaging over distributional forms," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    11. Samuel Müller & Alan H. Welsh, 2010. "On Model Selection Curves," International Statistical Review, International Statistical Institute, vol. 78(2), pages 240-256, August.
    12. Riani, Marco & Atkinson, Anthony Curtis & Corbellini, Aldo & Farcomeni, Alessio & Laurini, Fabrizio, 2024. "Information Criteria for Outlier Detection Avoiding Arbitrary Significance Levels," Econometrics and Statistics, Elsevier, vol. 29(C), pages 189-205.
    13. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    14. Chang, Yung-Chi & Enkhjargal, Uguumur & Huang, Chen-I & Lin, Wen-Ling & Ho, Chi-Ming, 2020. "Factors Affecting the Internet Banking Adoption," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 54(3), pages 117-131.
    15. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    16. Egil Ferkingstad & Anders L{o}land & Mathilde Wilhelmsen, 2011. "Causal modeling and inference for electricity markets," Papers 1110.5429, arXiv.org.
    17. Philippe Van Kerm & Seunghee Yu & Chung Choe, 2016. "Decomposing quantile wage gaps: a conditional likelihood approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 507-527, August.
    18. Martin Jullum & Nils Lid Hjort, 2019. "What price semiparametric Cox regression?," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 406-438, July.
    19. Martínez-Zarzoso, Inmaculada & Maruotti, Antonello, 2011. "The impact of urbanization on CO2 emissions: Evidence from developing countries," Ecological Economics, Elsevier, vol. 70(7), pages 1344-1353, May.
    20. Zhongqi Liang & Qihua Wang & Yuting Wei, 2022. "Robust model selection with covariables missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(3), pages 539-557, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:medema:v:37:y:2017:i:4:p:367-376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.