IDEAS home Printed from https://ideas.repec.org/a/sae/jedbes/v35y2010i6p611-628.html
   My bibliography  Save this article

Likelihood Ratio Tests for Special Rasch Models

Author

Listed:
  • David J. Hessen

Abstract

In this article, a general class of special Rasch models for dichotomous item scores is considered. Although Andersen’s likelihood ratio test can be used to test whether a Rasch model fits to the data, the test does not differentiate between special Rasch models. Therefore, in this article, new likelihood ratio tests are proposed for testing special Rasch models. The tests proposed do not require individual response pattern frequencies and are useful in practice when the observed total score frequencies are sufficiently large.

Suggested Citation

  • David J. Hessen, 2010. "Likelihood Ratio Tests for Special Rasch Models," Journal of Educational and Behavioral Statistics, , vol. 35(6), pages 611-628, December.
  • Handle: RePEc:sae:jedbes:v:35:y:2010:i:6:p:611-628
    DOI: 10.3102/1076998609359787
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.3102/1076998609359787
    Download Restriction: no

    File URL: https://libkey.io/10.3102/1076998609359787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Thissen, 1982. "Marginal maximum likelihood estimation for the one-parameter logistic model," Psychometrika, Springer;The Psychometric Society, vol. 47(2), pages 175-186, June.
    2. R. Bock & Murray Aitkin, 1981. "Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 443-459, December.
    3. C. Glas & N. Verhelst, 1989. "Extensions of the partial credit model," Psychometrika, Springer;The Psychometric Society, vol. 54(4), pages 635-659, September.
    4. Dean Follmann, 1988. "Consistent estimation in the rasch model based on nonparametric margins," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 553-562, December.
    5. Erling Andersen & Mette Madsen, 1977. "Estimating the parameters of the latent population distribution," Psychometrika, Springer;The Psychometric Society, vol. 42(3), pages 357-374, September.
    6. David Hessen, 2005. "Constant latent odds-ratios models and the mantel-haenszel null hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 70(3), pages 497-516, September.
    7. Cees Glas, 1988. "The derivation of some tests for the rasch model from the multinomial distribution," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 525-546, December.
    8. Erling Andersen, 1973. "A goodness of fit test for the rasch model," Psychometrika, Springer;The Psychometric Society, vol. 38(1), pages 123-140, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Maydeu-Olivares & Rosa Montaño, 2013. "How Should We Assess the Fit of Rasch-Type Models? Approximating the Power of Goodness-of-Fit Statistics in Categorical Data Analysis," Psychometrika, Springer;The Psychometric Society, vol. 78(1), pages 116-133, January.
    2. Aeilko Zwinderman, 1991. "A generalized rasch model for manifest predictors," Psychometrika, Springer;The Psychometric Society, vol. 56(4), pages 589-600, December.
    3. N. Verhelst & C. Glas, 1993. "A dynamic generalization of the Rasch model," Psychometrika, Springer;The Psychometric Society, vol. 58(3), pages 395-415, September.
    4. Cees Glas, 1999. "Modification indices for the 2-PL and the nominal response model," Psychometrika, Springer;The Psychometric Society, vol. 64(3), pages 273-294, September.
    5. C. Glas & Anna Dagohoy, 2007. "A Person Fit Test For Irt Models For Polytomous Items," Psychometrika, Springer;The Psychometric Society, vol. 72(2), pages 159-180, June.
    6. Haruhiko Ogasawara, 2013. "Asymptotic properties of the Bayes modal estimators of item parameters in item response theory," Computational Statistics, Springer, vol. 28(6), pages 2559-2583, December.
    7. Albert Maydeu-Olivares & Harry Joe, 2006. "Limited Information Goodness-of-fit Testing in Multidimensional Contingency Tables," Psychometrika, Springer;The Psychometric Society, vol. 71(4), pages 713-732, December.
    8. Clemens Draxler, 2018. "Bayesian conditional inference for Rasch models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 245-262, April.
    9. Clemens Draxler, 2010. "Sample Size Determination for Rasch Model Tests," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 708-724, December.
    10. Erling Andersen, 1995. "Residualanalysis in the polytomous rasch model," Psychometrika, Springer;The Psychometric Society, vol. 60(3), pages 375-393, September.
    11. Herbert Hoijtink, 1990. "A latent trait model for dichotomous choice data," Psychometrika, Springer;The Psychometric Society, vol. 55(4), pages 641-656, December.
    12. Clemens Draxler & Rainer Alexandrowicz, 2015. "Sample Size Determination Within the Scope of Conditional Maximum Likelihood Estimation with Special Focus on Testing the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 897-919, December.
    13. A. Béguin & C. Glas, 2001. "MCMC estimation and some model-fit analysis of multidimensional IRT models," Psychometrika, Springer;The Psychometric Society, vol. 66(4), pages 541-561, December.
    14. David J. Hessen, 2023. "Fitting and Testing Log-Linear Subpopulation Models with Known Support," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 917-939, September.
    15. Cees Glas, 1988. "The derivation of some tests for the rasch model from the multinomial distribution," Psychometrika, Springer;The Psychometric Society, vol. 53(4), pages 525-546, December.
    16. Paul Holland, 1990. "On the sampling theory roundations of item response theory models," Psychometrika, Springer;The Psychometric Society, vol. 55(4), pages 577-601, December.
    17. Li Cai, 2010. "A Two-Tier Full-Information Item Factor Analysis Model with Applications," Psychometrika, Springer;The Psychometric Society, vol. 75(4), pages 581-612, December.
    18. Timo Bechger & Gunter Maris, 2015. "A Statistical Test for Differential Item Pair Functioning," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 317-340, June.
    19. Mair, Patrick & Hatzinger, Reinhold, 2007. "Extended Rasch Modeling: The eRm Package for the Application of IRT Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 20(i09).
    20. Robert Zwitser & Gunter Maris, 2015. "Conditional Statistical Inference with Multistage Testing Designs," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 65-84, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:jedbes:v:35:y:2010:i:6:p:611-628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.