IDEAS home Printed from https://ideas.repec.org/a/sae/globus/v25y2024i2p323-348.html
   My bibliography  Save this article

Feature Selection for Dimension Reduction of Financial Data for Detection of Financial Statement Frauds in Context to Indian Companies

Author

Listed:
  • Sonika Gupta
  • Sushil Kumar Mehta

Abstract

The financial fraud detection problem involves analysis of the large financial datasets. Financial statement fraud detection process is concentrated on two major aspects: first, identification of the financial variables and ratios, also termed as features. Second, applying the data mining methods to classify the organizations into two broad categories: fraudulent and non-fraudulent organizations. If the input dataset contains large number of irrelevant and correlated features, the computational load of the machine learning technique increases and the effectiveness of the classification outcomes decreases. The feature selection process selects a subset of most significant attributes or variables that can be the representative of original data. This selected subset can help in learning the pattern in data at much less time and with accuracy, in order to produce useful information for decision-making. This article briefly states the methods applied in the prior studies for selecting the features for financial statement fraud detection. This article also presents an approach to feature selection using correlation-based filter selection methods in which feature selection is performed based on ensemble model, and tests the outcome of the approach by applying the mean ratio analysis on financial data of Indian companies.

Suggested Citation

  • Sonika Gupta & Sushil Kumar Mehta, 2024. "Feature Selection for Dimension Reduction of Financial Data for Detection of Financial Statement Frauds in Context to Indian Companies," Global Business Review, International Management Institute, vol. 25(2), pages 323-348, April.
  • Handle: RePEc:sae:globus:v:25:y:2024:i:2:p:323-348
    DOI: 10.1177/0972150920928663
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0972150920928663
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0972150920928663?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Emie Famieza Zainudin & Hafiza Aishah Hashim, 2016. "Detecting fraudulent financial reporting using financial ratio," Journal of Financial Reporting and Accounting, Emerald Group Publishing Limited, vol. 14(2), pages 266-278, October.
    2. Jerry W. Lin & Mark I. Hwang & Jack D. Becker, 2003. "A fuzzy neural network for assessing the risk of fraudulent financial reporting," Managerial Auditing Journal, Emerald Group Publishing Limited, vol. 18(8), pages 657-665, November.
    3. Egbunike Patrick Amaechi & Ezeabasili Vincent Nnanyereugo, 2013. "Application of Computed Financial Ratios in Fraud Detection Modelling: A Study of Selected Banks in Nigeria," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 3(11), pages 1405-1418.
    4. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    5. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    6. Mark Cecchini & Haldun Aytug & Gary J. Koehler & Praveen Pathak, 2010. "Detecting Management Fraud in Public Companies," Management Science, INFORMS, vol. 56(7), pages 1146-1160, July.
    7. Charalambos T. Spathis, 2002. "Detecting false financial statements using published data: some evidence from Greece," Managerial Auditing Journal, Emerald Group Publishing Limited, vol. 17(4), pages 179-191, June.
    8. Baker, Samuel H, 1973. "Risk, Leverage, and Profitability: An Industry Analysis," The Review of Economics and Statistics, MIT Press, vol. 55(4), pages 503-507, November.
    9. Ch. Spathis & M. Doumpos & C. Zopounidis, 2002. "Detecting falsified financial statements: a comparative study using multicriteria analysis and multivariate statistical techniques," European Accounting Review, Taylor & Francis Journals, vol. 11(3), pages 509-535.
    10. Chyan-long Jan, 2018. "An Effective Financial Statements Fraud Detection Model for the Sustainable Development of Financial Markets: Evidence from Taiwan," Sustainability, MDPI, vol. 10(2), pages 1-14, February.
    11. Kathleen A. Kaminski & T. Sterling Wetzel & Liming Guan, 2004. "Can financial ratios detect fraudulent financial reporting?," Managerial Auditing Journal, Emerald Group Publishing Limited, vol. 19(1), pages 15-28, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cebi, Selcuk & Karakurt, Necip Fazıl & Kurtulus, Erkan & Tokgoz, Bunyamin, 2024. "Development of a decision support system for client acceptance in independent audit process," International Journal of Accounting Information Systems, Elsevier, vol. 53(C).
    2. Elias Zavitsanos & Dimitris Mavroeidis & Konstantinos Bougiatiotis & Eirini Spyropoulou & Lefteris Loukas & Georgios Paliouras, 2023. "Financial misstatement detection: a realistic evaluation," Papers 2305.17457, arXiv.org.
    3. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    4. Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
    5. Modina, Michele & Pietrovito, Filomena & Gallucci, Carmen & Formisano, Vincenzo, 2023. "Predicting SMEs’ default risk: Evidence from bank-firm relationship data," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 254-268.
    6. Saara Tamminen, 2017. "Regional effects or none? Firms' profitability during the Great Recession in Finland," Papers in Regional Science, Wiley Blackwell, vol. 96(1), pages 33-59, March.
    7. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    8. Saiful Anwar & A.M Hasan Ali, 2018. "ANNs-BASED EARLY WARNING SYSTEM FOR INDONESIAN ISLAMIC BANKS," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 20(3), pages 325-342, January.
    9. E. Fedorova A. & M. Chukhlantseva A. & D. Chekrizov V. & ЕЛЕНА Федорова АНАТОЛЬЕВНА & МАРИЯ Чухланцева АЛЕКСАНДРОВНА & ДМИТРИЙ Чекризов ВАСИЛЬЕВИЧ, 2017. "Нормативные значения коэффициентов финансовой устойчивости: особенности видов экономической деятельности // Normative Values of Financial Stability Ratios: Industry-Specific Features," Управленческие науки // Management Science, ФГОБУВО Финансовый университет при Правительстве Российской Федерации // Financial University under The Government of Russian Federation, vol. 7(2), pages 44-55.
    10. Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.
    11. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    12. Arati Kale & Devendra Kale & Sriram Villupuram, 2024. "Decomposition of risk for small size and low book-to-market stocks," Journal of Asset Management, Palgrave Macmillan, vol. 25(1), pages 96-112, February.
    13. Ahsan Habib & Mabel D' Costa & Hedy Jiaying Huang & Md. Borhan Uddin Bhuiyan & Li Sun, 2020. "Determinants and consequences of financial distress: review of the empirical literature," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(S1), pages 1023-1075, April.
    14. Miquel-Flores, Ixart & Reghezza, Alessio & Buchetti, Bruno & Perdichizzi, Salvatore, 2024. "Greening the economy: how public-guaranteed loans influence firm-level resource allocation," Working Paper Series 2916, European Central Bank.
    15. Juraini Zainol Abidin & Nur Adiana Hiau Abdullah & Karren Lee-Hwei Khaw, 2020. "Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models," Capital Markets Review, Malaysian Finance Association, vol. 28(2), pages 29-41.
    16. Bamiatzi, Vassiliki & Efthyvoulou, Georgios & Jabbour, Liza, 2017. "Foreign vs domestic ownership on debt reduction: An investigation of acquisition targets in Italy and Spain," International Business Review, Elsevier, vol. 26(5), pages 801-815.
    17. Geoffroy Enjolras & Philippe Madiès, 2020. "The role of bank analysts and scores in the prediction of financial distress: Evidence from French farms," Economics Bulletin, AccessEcon, vol. 40(4), pages 2978-2993.
    18. Nasim Nasirpour & Alireza Mazdaki & Esmail Enayati, 2016. "The Investigation and Comparison of the Performance of Heuristic Methods in the Prediction of the Type of Auditor’s Opinion in Firms Accepted in Tehran Stock Exchange," Asian Social Science, Canadian Center of Science and Education, vol. 12(6), pages 148-148, June.
    19. Noora Alzayed & Rasol Eskandari & Hassan Yazdifar, 2023. "Bank failure prediction: corporate governance and financial indicators," Review of Quantitative Finance and Accounting, Springer, vol. 61(2), pages 601-631, August.
    20. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:globus:v:25:y:2024:i:2:p:323-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: http://www.imi.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.