IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v40y2013i6p1071-1086.html
   My bibliography  Save this article

Urban Street Networks, a Comparative Analysis of Ten European Cities

Author

Listed:
  • Emanuele Strano

    (Laboratory of Geographic Information Systems, School of Architecture, Civil and Environmental Engineering, Ecole Polytechique Fédérale de Lausanne (EPFL), and Urban Design Studies Unit, Department of Architecture, University of Strathclyde, Glasgow, Scotland)

  • Matheus Viana
  • Luciano da Fontoura Costa
  • Alessio Cardillo

    (Departamento de Física de Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza, Spain, and Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, E-50018 Zaragoza, Spain, and Dipartimento di Fisica e Astronomia, Università de Catania and INFN, Via S Sofia, 64, 95123 Catania, Italy)

  • Sergio Porta

    (Urban Design Studies Unit, Department of Architecture, University of Strathclyde, Glasgow, Scotland)

  • Vito Latora

    (School of Mathematical Sciences, Queen Mary, University of London, London, England, and Dipartimento di Fisica e Astronomia, Università di Catania and INFN, Via S Sofia, 64, 95123 Catania, Italy, and Laboratorio sui Sistemi Complessi, Scuola Superiore de Catania, Via San Nullo 5/I, 95123 Catania, Italy)

Abstract

We compare the structural properties of the street networks of ten different European cities using their primal representation. We investigate the properties of the geometry of the networks and a set of centrality measures highlighting differences and similarities between cases. In particular, we found that cities share structural similarities due to their quasiplanarity but that there are also several distinctive geometrical properties. A principal component analysis is performed on the distributions of centralities and their respective moments, which is used to find distinctive characteristics by which we can classify cities into families. We believe that, beyond the improvement of the empirical knowledge on streets' network properties, our findings can open new perspectives into the scientific relationship between city planning and complex networks, stimulating the debate on the effectiveness of the set of knowledge that statistical physics can contribute for city planning and urban-morphology studies.

Suggested Citation

  • Emanuele Strano & Matheus Viana & Luciano da Fontoura Costa & Alessio Cardillo & Sergio Porta & Vito Latora, 2013. "Urban Street Networks, a Comparative Analysis of Ten European Cities," Environment and Planning B, , vol. 40(6), pages 1071-1086, December.
  • Handle: RePEc:sae:envirb:v:40:y:2013:i:6:p:1071-1086
    DOI: 10.1068/b38216
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b38216
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b38216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    2. Carlo Ratti & Stanislav Sobolevsky & Francesco Calabrese & Clio Andris & Jonathan Reades & Mauro Martino & Rob Claxton & Steven H Strogatz, 2010. "Redrawing the Map of Great Britain from a Network of Human Interactions," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geoff Boeing, 2020. "Planarity and street network representation in urban form analysis," Environment and Planning B, , vol. 47(5), pages 855-869, June.
    2. Boeing, Geoff, 2019. "Street Network Models and Measures for Every U.S. City, County, Urbanized Area, Census Tract, and Zillow-Defined Neighborhood," SocArXiv 7fxjz, Center for Open Science.
    3. Baorui Han & Dazhi Sun & Xiaomei Yu & Wanlu Song & Lisha Ding, 2020. "Classification of Urban Street Networks Based on Tree-Like Network Features," Sustainability, MDPI, vol. 12(2), pages 1-13, January.
    4. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    5. Shiguang Wang & Dexin Yu & Mei-Po Kwan & Huxing Zhou & Yongxing Li & Hongzhi Miao, 2019. "The Evolution and Growth Patterns of the Road Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 to 2017," Sustainability, MDPI, vol. 11(19), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    2. Wagner, Roy, 2008. "On the metric, topological and functional structures of urban networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2120-2132.
    3. Ermal Shpuza, 2017. "Relative size measures of urban form based on allometric subtraction," Environment and Planning B, , vol. 44(1), pages 141-159, January.
    4. Yao Shen & Michael Batty, 2019. "Delineating the perceived functional regions of London from commuting flows," Environment and Planning A, , vol. 51(3), pages 547-550, May.
    5. Lin, Jingyi, 2012. "Network analysis of China’s aviation system, statistical and spatial structure," Journal of Transport Geography, Elsevier, vol. 22(C), pages 109-117.
    6. Asya Natapov & Daniel Czamanski & Dafna Fisher-Gewirtzman, 2018. "A Network Approach to Link Visibility and Urban Activity Location," Networks and Spatial Economics, Springer, vol. 18(3), pages 555-575, September.
    7. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    8. Basnak, Paul & Giesen, Ricardo & Muñoz, Juan Carlos, 2020. "Technology choices in public transport planning: A classification framework," Research in Transportation Economics, Elsevier, vol. 83(C).
    9. Zhao, Pengxiang & Jia, Tao & Qin, Kun & Shan, Jie & Jiao, Chenjing, 2015. "Statistical analysis on the evolution of OpenStreetMap road networks in Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 59-72.
    10. Chunzhu Wei & Pablo Cabrera-Barona & Thomas Blaschke, 2016. "Local Geographic Variation of Public Services Inequality: Does the Neighborhood Scale Matter?," IJERPH, MDPI, vol. 13(10), pages 1-20, October.
    11. Garrett Dash Nelson, 2021. "Communities, Complexity, and the ‘Conchoration’: Network Analysis and the Ontology of Geographic Units," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 112(4), pages 351-369, September.
    12. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    13. Quanyi Zheng & Xiaolong Zhao & Mengxiao Jin, 2019. "Research on Urban Public Green Space Planning Based on Taxi Data: A Case Study on Three Districts of Shenzhen, China," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    14. Ding, Liang & Huang, Ziqian & Xiao, Chaowei, 2023. "Are human activities consistent with planning? A big data evaluation of master plan implementation in Changchun," Land Use Policy, Elsevier, vol. 126(C).
    15. David J Giacomin & David M Levinson, 2015. "Road network circuity in metropolitan areas," Environment and Planning B, , vol. 42(6), pages 1040-1053, November.
    16. Pavithra Parthasarathi & David Levinson & Hartwig Hochmair, 2013. "Network Structure and Travel Time Perception," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-13, October.
    17. Michele Coscia & Ricardo Hausmann, 2015. "Evidence That Calls-Based and Mobility Networks Are Isomorphic," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-15, December.
    18. Amaud Banos, 2012. "Network Effects in Schelling's Model of Segregation: New Evidence from Agent-Based Simulation," Environment and Planning B, , vol. 39(2), pages 393-405, April.
    19. Madeleine I. G. Daepp, 2022. "Small-area moving ratios and the spatial connectivity of neighborhoods: Insights from consumer credit data," Environment and Planning B, , vol. 49(3), pages 1129-1146, March.
    20. Agryzkov, Taras & Tortosa, Leandro & Vicent, Jose F., 2018. "An algorithm to compute data diversity index in spatial networks," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 63-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:40:y:2013:i:6:p:1071-1086. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.