IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v53y2021i8p1855-1858.html
   My bibliography  Save this article

Population mobility, urban centrality and subnetworks in China revealed by social sensing big data

Author

Listed:
  • Hongwei Guo

    (Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, 12655East China Normal University, China)

  • Ji Han

    (Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, 12655East China Normal University, China)

  • Jian Wang

    (SILC Business School, 34747Shanghai University, China; Business School, 1994University of Technology Sydney, Australia)

Abstract

Studying the spatial pattern of population flows is important to gain insights into economic connections, city networks and traffic demand. The dearth of integrative data suggests that the spatial pattern of population migration has still received relatively scant research with modified algorithms despite its vital guidance in epidemic control. To address this gap, we employ unique social sensing data from the Tencent migration platform to investigate the spatial configuration of population migration in China. Based on the identified 2,555,596 aggregated origin-destination records in 2018, we map the spatial pattern of population flow with the algorithm of eigenvector centrality. The geovisualisation illustrates that population flows present an uneven spatial pattern with a clear east/west divide. The geovisualisation depicts that the cities with higher administrative levels show corresponding high centrality to a certain extent. The results also show that subnetworks of migration flow demonstrate that population flows are near movements.

Suggested Citation

  • Hongwei Guo & Ji Han & Jian Wang, 2021. "Population mobility, urban centrality and subnetworks in China revealed by social sensing big data," Environment and Planning A, , vol. 53(8), pages 1855-1858, November.
  • Handle: RePEc:sae:envira:v:53:y:2021:i:8:p:1855-1858
    DOI: 10.1177/0308518X211035400
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0308518X211035400
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0308518X211035400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Markus Schläpfer & Lei Dong & Kevin O’Keeffe & Paolo Santi & Michael Szell & Hadrien Salat & Samuel Anklesaria & Mohammad Vazifeh & Carlo Ratti & Geoffrey B. West, 2021. "The universal visitation law of human mobility," Nature, Nature, vol. 593(7860), pages 522-527, May.
    2. Sheng Wei & Lei Wang, 2020. "Examining the population flow network in China and its implications for epidemic control based on Baidu migration data," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jianmiao & Li, Junyi & Chen, Yong & Lian, Song & Zeng, Jiaqi & Geng, Maosi & Zheng, Sijing & Dong, Yinan & He, Yan & Huang, Pei & Zhao, Zhijian & Yan, Xiaoyu & Hu, Qinru & Wang, Lei & Yang, Di & , 2023. "Multi-scale urban passenger transportation CO2 emission calculation platform for smart mobility management," Applied Energy, Elsevier, vol. 331(C).
    2. Paulsen, Mads & Rich, Jeppe, 2023. "Societally optimal expansion of bicycle networks," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    3. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Toger, Marina & Türk, Umut & Östh, John & Kourtit, Karima & Nijkamp, Peter, 2023. "Inequality in leisure mobility: An analysis of activity space segregation spectra in the Stockholm conurbation," Journal of Transport Geography, Elsevier, vol. 111(C).
    5. Shi, Shuyang & Wang, Lin & Wang, Xiaofan, 2022. "Uncovering the spatiotemporal motif patterns in urban mobility networks by non-negative tensor decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    6. Francesco Filippi, 2022. "A Paradigm Shift for a Transition to Sustainable Urban Transport," Sustainability, MDPI, vol. 14(5), pages 1-27, March.
    7. Munirul H. Nabin & Mohammad Tarequl Hasan Chowdhury & Sukanto Bhattacharya, 2021. "It matters to be in good hands: the relationship between good governance and pandemic spread inferred from cross-country COVID-19 data," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    8. Xiaodong Zhang & Haoying Han, 2023. "Spatiotemporal Dynamic Characteristics and Causes of China’s Population Aging from 2000 to 2020," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    9. Xufang Mu & Chuanglin Fang & Zhiqi Yang & Xiaomin Guo, 2022. "Impact of the COVID-19 Epidemic on Population Mobility Networks in the Beijing–Tianjin–Hebei Urban Agglomeration from a Resilience Perspective," Land, MDPI, vol. 11(5), pages 1-23, May.
    10. Yuyang Wu & Yao Yao & Shuliang Ren & Shiyi Zhang & Qingfeng Guan, 2023. "How do urban services facilities affect social segregation among people of different economic levels? A case study of Shenzhen city," Environment and Planning B, , vol. 50(6), pages 1502-1517, July.
    11. Pierre Magontier, Maximilian v. Ehrlich, Markus Schl pfer, 2022. "The Fragility of Urban Social Networks - Mobility as a City Glue -," Diskussionsschriften credresearchpaper38, Universitaet Bern, Departement Volkswirtschaft - CRED.
    12. Hadrien Salat & Dustin Carlino & Fernando Benitez-Paez & Anna Zanchetta & Daniel Arribas-Bel & Mark Birkin, 2023. "Synthetic population Catalyst: A micro-simulated population of England with circadian activities," Environment and Planning B, , vol. 50(8), pages 2309-2316, October.
    13. Yaming Zhang & Xiaoyu Guo & Yanyuan Su & Yaya Hamadou Koura H & Na Wang & Wenjie Song, 2023. "Changes in spatiotemporal pattern and network characteristics in population migration of China’s cities before and after COVID-19," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-17, December.
    14. Li, Wen-Jing & Chen, Zhi & Jin, Ke-Zhong & Wang, Jun & Yuan, Lin & Gu, Changgui & Jiang, Luo-Luo & Perc, Matjaž, 2022. "Options for mobility and network reciprocity to jointly yield robust cooperation in social dilemmas," Applied Mathematics and Computation, Elsevier, vol. 435(C).
    15. Cardoso, M. & Souza, J.T.G. & Neli, R.R. & Souza, W.E., 2023. "Scaling laws from Brazilian state election results point out that, the candidate’s chance to win increases by investing more campaign efforts in smaller electorates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    16. Shenzhen Tian & Jialin Jiang & Hang Li & Xueming Li & Jun Yang & Chuanglin Fang, 2023. "Flow space reveals the urban network structure and development mode of cities in Liaoning, China," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-17, December.
    17. Sevtsuk, Andres & Basu, Rounaq, 2022. "The role of turns in pedestrian route choice: A clarification," Journal of Transport Geography, Elsevier, vol. 102(C).
    18. Laura Alessandretti & Luis Guillermo Natera Orozco & Meead Saberi & Michael Szell & Federico Battiston, 2023. "Multimodal urban mobility and multilayer transport networks," Environment and Planning B, , vol. 50(8), pages 2038-2070, October.
    19. Jiang, Jincheng & Xu, Zhihua & Zhang, Zhenxin & Zhang, Jie & Liu, Kang & Kong, Hui, 2023. "Revealing the fractal and self-similarity of realistic collective human mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    20. Pietro Folco & Laetitia Gauvin & Michele Tizzoni & Michael Szell, 2023. "Data-driven micromobility network planning for demand and safety," Environment and Planning B, , vol. 50(8), pages 2087-2102, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:53:y:2021:i:8:p:1855-1858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.