IDEAS home Printed from https://ideas.repec.org/a/sae/envira/v51y2019i7p1420-1423.html
   My bibliography  Save this article

Bicycle–metro integration for the ‘last mile’: Visualizing cycling in Shanghai

Author

Listed:
  • Ze Zhang
  • Chen Qian
  • Yiyang Bian

Abstract

Bicycle-metro integration is theoretically considered to be an effective solution for improving public transportation efficiency of “last mile†between home and metro station in cities. However, this proposition has not been fully proved in practice. In recent years, the emerging dockless bike-sharing system makes it possible to examine the spatial integration between flexible bicycle traffic and rail transit. This study mapped the bicycle traffic on an equal population cartogram of Shanghai to distinguish overall patterns within the center of Shanghai. The research result indicates the sharing bike usage frequency from metro station to outlying area is gradual declining, which demonstrates that bicycle-metro integration has already become the basic model for daily transport in Shanghai.

Suggested Citation

  • Ze Zhang & Chen Qian & Yiyang Bian, 2019. "Bicycle–metro integration for the ‘last mile’: Visualizing cycling in Shanghai," Environment and Planning A, , vol. 51(7), pages 1420-1423, October.
  • Handle: RePEc:sae:envira:v:51:y:2019:i:7:p:1420-1423
    DOI: 10.1177/0308518X18816695
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0308518X18816695
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0308518X18816695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Faghih-Imani, Ahmadreza & Eluru, Naveen, 2016. "Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system," Journal of Transport Geography, Elsevier, vol. 54(C), pages 218-227.
    2. Parkes, Stephen D. & Marsden, Greg & Shaheen, Susan A. & Cohen, Adam P., 2013. "Understanding the diffusion of public bikesharing systems: evidence from Europe and North America," Journal of Transport Geography, Elsevier, vol. 31(C), pages 94-103.
    3. Ravi Chinta & Fiona Sussan, 2018. "A Triple-Helix Ecosystem for Entrepreneurship: A Case Review," International Studies in Entrepreneurship, in: Allan O'Connor & Erik Stam & Fiona Sussan & David B. Audretsch (ed.), Entrepreneurial Ecosystems, pages 67-80, Springer.
    4. repec:cdl:itsrrp:qt3qr9h2pr is not listed on IDEAS
    5. Zhao, Pengjun & Li, Shengxiao, 2017. "Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 46-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan José Vinagre Díaz & Rubén Fernández Pozo & Ana Belén Rodríguez González & Mark Richard Wilby & Bani Anvari, 2024. "Blind classification of e-scooter trips according to their relationship with public transport," Transportation, Springer, vol. 51(5), pages 1679-1700, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ze & Guo, Yuchen & Feng, Li, 2022. "Externalities of dockless bicycle-sharing systems: Implications for green recovery of the transportation sector," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 410-419.
    2. Cai Jia & Yanyan Chen & Tingzhao Chen & Yanan Li & Luzhou Lin, 2022. "Evolutionary Game Analysis on Sharing Bicycles and Metro Strategies: Impact of Phasing out Subsidies for Bicycle–Metro Integration Model," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    3. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    4. Elżbieta Macioszek & Paulina Świerk & Agata Kurek, 2020. "The Bike-Sharing System as an Element of Enhancing Sustainable Mobility—A Case Study based on a City in Poland," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    5. Xueying Wu & Yi Lu & Yaoyu Lin & Yiyang Yang, 2019. "Measuring the Destination Accessibility of Cycling Transfer Trips in Metro Station Areas: A Big Data Approach," IJERPH, MDPI, vol. 16(15), pages 1-16, July.
    6. Jiaoe Wang & Jie Huang & Michael Dunford, 2019. "Rethinking the Utility of Public Bicycles: The Development and Challenges of Station-Less Bike Sharing in China," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    7. Shuo Zhang & Li Chen & Yingzi Li, 2021. "Shared Bicycle Distribution Connected to Subway Line Considering Citizens’ Morning Peak Social Characteristics for Urban Low-Carbon Development," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    8. Yuan Li & Zhenjun Zhu & Xiucheng Guo, 2019. "Operating Characteristics of Dockless Bike-Sharing Systems near Metro Stations: Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    9. Morton, Craig, 2020. "The demand for cycle sharing: Examining the links between weather conditions, air quality levels, and cycling demand for regular and casual users," Journal of Transport Geography, Elsevier, vol. 88(C).
    10. Wu, Xueying & Lu, Yi & Gong, Yongxi & Kang, Yuhao & Yang, Linchuan & Gou, Zhonghua, 2021. "The impacts of the built environment on bicycle-metro transfer trips: A new method to delineate metro catchment area based on people's actual cycling space," Journal of Transport Geography, Elsevier, vol. 97(C).
    11. Ma, Xinwei & Ji, Yanjie & Yang, Mingyuan & Jin, Yuchuan & Tan, Xu, 2018. "Understanding bikeshare mode as a feeder to metro by isolating metro-bikeshare transfers from smart card data," Transport Policy, Elsevier, vol. 71(C), pages 57-69.
    12. Zheng Wen & Dongwei Tian & Naiming Wu, 2024. "Modeling and Analyzing the Spatiotemporal Travel Patterns of Bike Sharing: A Case Study of Citi Bike in New York," Sustainability, MDPI, vol. 17(1), pages 1-21, December.
    13. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    14. Chan, Tommy Ho-Yin, 2025. "Socio-material perspectives on perceived accessibility of cycling: A sociological inquiry into practices, regulations and informal rules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 195(C).
    15. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    16. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.
    17. Zhaowei Yin & Yuanyuan Guo & Mengshu Zhou & Yixuan Wang & Fengliang Tang, 2024. "Integration between Dockless Bike-Sharing and Buses: The Effect of Urban Road Network Characteristics," Land, MDPI, vol. 13(8), pages 1-24, August.
    18. Nikolaos-Fivos Galatoulas & Konstantinos N. Genikomsakis & Christos S. Ioakimidis, 2020. "Spatio-Temporal Trends of E-Bike Sharing System Deployment: A Review in Europe, North America and Asia," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    19. Jie Bao & Chengcheng Xu & Pan Liu & Wei Wang, 2017. "Exploring Bikesharing Travel Patterns and Trip Purposes Using Smart Card Data and Online Point of Interests," Networks and Spatial Economics, Springer, vol. 17(4), pages 1231-1253, December.
    20. Zhou, Xiaolu & Wang, Mingshu & Li, Dongying, 2019. "Bike-sharing or taxi? Modeling the choices of travel mode in Chicago using machine learning," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envira:v:51:y:2019:i:7:p:1420-1423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.