IDEAS home Printed from https://ideas.repec.org/a/sae/chnrpt/v59y2023i4p349-368.html
   My bibliography  Save this article

The Onus on Coal Consumption and the ‘Beautiful China Initiative’: Economic and Policy Implications

Author

Listed:
  • Daniel Rajmil

    (Political Sciences and Law Faculty, Universitat Oberta de Catalunya, Barcelona, Spain. drajmil@uoc.edu)

  • Lucía Morales

    (School of Accounting, Economics and Finance, Technological University Dublin, Dublin, Ireland)

  • Bernadette Andreosso-O’Callaghan

    (Kemmy Business School, University of Limerick, Limerick, Ireland)

Abstract

China’s need for rapid economic growth and its hunger for natural resources significantly challenge its economic and policy vision of sustainability, social stability and economic development. The ‘Beautiful China Initiative’ plans to put China on the path of sustainable development in line with the United Nations’ 2030 Agenda and its Sustainable Development GoaSls. The Chinese authorities are expected to reconsider traditional economic policy models to integrate environmental protection while ensuring that their economy proliferates. The shift from a traditional and heavy coal-dependent economy towards greener energy and a sustainable economic model brings additional challenges to China due to its historical dependence on coal as its energy engine. This research paper examines causality patterns between economic growth and fossil fuels energy consumption by analysing coal consumption and carbon dioxide emissions policies using Pesaran’s autoregressive distributed lag model. The research findings offer insights into China’s challenges to transition towards a more sustainable economic model, making the country’s ‘Beautiful China Initiative’ quite complex as it needs to navigate through high levels of environment-friendly economic growth whilst trying to avoid the middle-income trap.

Suggested Citation

  • Daniel Rajmil & Lucía Morales & Bernadette Andreosso-O’Callaghan, 2023. "The Onus on Coal Consumption and the ‘Beautiful China Initiative’: Economic and Policy Implications," China Report, , vol. 59(4), pages 349-368, November.
  • Handle: RePEc:sae:chnrpt:v:59:y:2023:i:4:p:349-368
    DOI: 10.1177/00094455231188105
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/00094455231188105
    Download Restriction: no

    File URL: https://libkey.io/10.1177/00094455231188105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Aijun & Zhang, Aizhen & Huang, Huijie & Yao, Xin, 2018. "Measuring unified efficiency of fossil fuel power plants across provinces in China: An analysis based on non-radial directional distance functions," Energy, Elsevier, vol. 152(C), pages 549-561.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    2. Fan, Jing-Li & Zhang, Hao & Zhang, Xian, 2020. "Unified efficiency measurement of coal-fired power plants in China considering group heterogeneity and technological gaps," Energy Economics, Elsevier, vol. 88(C).
    3. Hosseini, Keyvan & Stefaniec, Agnieszka, 2019. "Efficiency assessment of Iran's petroleum refining industry in the presence of unprofitable output: A dynamic two-stage slacks-based measure," Energy, Elsevier, vol. 189(C).
    4. Teng, Xiangyu & Liu, Fan-peng & Chiu, Yung-ho, 2021. "The change in energy and carbon emissions efficiency after afforestation in China by applying a modified dynamic SBM model," Energy, Elsevier, vol. 216(C).
    5. Lin, Boqiang & Bai, Rui, 2020. "Dynamic energy performance evaluation of Chinese textile industry," Energy, Elsevier, vol. 199(C).
    6. Sun, Chuanwang & Liu, Xiaohong & Li, Aijun, 2018. "Measuring unified efficiency of Chinese fossil fuel power plants: Intermediate approach combined with group heterogeneity and window analysis," Energy Policy, Elsevier, vol. 123(C), pages 8-18.
    7. Yuan, Zhen & Xu, Jie & Li, Bing & Yao, Tingting, 2022. "Limits of technological progress in controlling energy consumption: Evidence from the energy rebound effects across China's industrial sector," Energy, Elsevier, vol. 245(C).
    8. Sueyoshi, Toshiyuki & Li, Aijun & Liu, Xiaohong, 2019. "Exploring sources of China's CO2 emission: Decomposition analysis under different technology changes," European Journal of Operational Research, Elsevier, vol. 279(3), pages 984-995.
    9. Xu, Bin & Luo, Yuemei & Xu, Renjing & Chen, Jianbao, 2021. "Exploring the driving forces of distributed energy resources in China: Using a semiparametric regression model," Energy, Elsevier, vol. 236(C).
    10. Wu, Wanlu & Cheng, Yuanyuan & Lin, Xiqiao & Yao, Xin, 2019. "How does the implementation of the Policy of Electricity Substitution influence green economic growth in China?," Energy Policy, Elsevier, vol. 131(C), pages 251-261.
    11. Zhang, Yijun & Song, Yi, 2020. "Unified efficiency of coal mining enterprises in China: An analysis based on meta-frontier non-radial directional distance functions," Resources Policy, Elsevier, vol. 65(C).
    12. Lin, Boqiang & Chen, Xing, 2020. "How technological progress affects input substitution and energy efficiency in China: A case of the non-ferrous metals industry," Energy, Elsevier, vol. 206(C).
    13. Sueyoshi, Toshiyuki & Qu, Jingjing & Li, Aijun & Liu, Xiaohong, 2021. "A new approach for evaluating technology inequality and diffusion barriers: The concept of efficiency Gini coefficient and its application in Chinese provinces," Energy, Elsevier, vol. 235(C).
    14. Jie Liu & Chunhui Yuan & Xiaolong Li, 2019. "The Environmental Assessment on Chinese Logistics Enterprises Based on Non-Radial DEA," Energies, MDPI, vol. 12(24), pages 1-18, December.
    15. Xu, Bin & Lin, Boqiang, 2021. "Investigating spatial variability of CO2 emissions in heavy industry: Evidence from a geographically weighted regression model," Energy Policy, Elsevier, vol. 149(C).
    16. Chen, Jiabin & Wen, Shaobo & Liu, Yuchen, 2022. "Research on the efficiency of the mining industry in China from the perspective of time and space," Resources Policy, Elsevier, vol. 75(C).
    17. Shixiong Cheng & Jiahui Xie & De Xiao & Yun Zhang, 2019. "Measuring the Environmental Efficiency and Technology Gap of PM 2.5 in China’s Ten City Groups: An Empirical Analysis Using the EBM Meta-Frontier Model," IJERPH, MDPI, vol. 16(4), pages 1-22, February.
    18. Toshiyuki Sueyoshi & Mika Goto, 2020. "Performance Assessment of Japanese Electric Power Industry: DEA Measurement with Future Impreciseness," Energies, MDPI, vol. 13(2), pages 1-24, January.
    19. Zhu, Runqing & Lin, Boqiang, 2021. "Energy and carbon performance improvement in China's mining Industry:Evidence from the 11th and 12th five-year plan," Energy Policy, Elsevier, vol. 154(C).
    20. Ramin Gharizadeh Beiragh & Reza Alizadeh & Saeid Shafiei Kaleibari & Fausto Cavallaro & Sarfaraz Hashemkhani Zolfani & Romualdas Bausys & Abbas Mardani, 2020. "An integrated Multi-Criteria Decision Making Model for Sustainability Performance Assessment for Insurance Companies," Sustainability, MDPI, vol. 12(3), pages 1, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:chnrpt:v:59:y:2023:i:4:p:349-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.