IDEAS home Printed from https://ideas.repec.org/a/rss/jnljms/v3i10p4.html
   My bibliography  Save this article

The Prediction Model of Bankruptcy: Evidence from the Small and Medium Enterprises (SMEs) in Thailand

Author

Listed:
  • Yossavadee Pugpaichit
  • Phassawan Suntrauk

Abstract

The study aims to develop the bankruptcy prediction model of Small and Medium Enterprises (SMEs) in form of company limited in Thailand during 2005-2010.Using logistic regression analysis and in-the-sample data,results show that the bankruptcy prediction model consists of a ratio of earnings after taxes to total assets and an asset turnover ratio. Since these two financial ratios represent profitability and asset utilization of firms, it is asserted that bankrupt firms are those who have relative low profitability due to their inefficient use of assets in generating profits continuously. By using out-of-sample data to examine the predictive ability of the estimated model, the results reveal that the estimated prediction model provides favorable results in which the percentages of accuracy of predicting bankrupt and non- bankrupt firms are 68% and 60%, respectively.

Suggested Citation

  • Yossavadee Pugpaichit & Phassawan Suntrauk, 2014. "The Prediction Model of Bankruptcy: Evidence from the Small and Medium Enterprises (SMEs) in Thailand," International Journal of Management Sciences, Research Academy of Social Sciences, vol. 3(10), pages 788-796.
  • Handle: RePEc:rss:jnljms:v3i10p4
    as

    Download full text from publisher

    File URL: http://rassweb.org/admin/pages/ResearchPapers/Paper%204_1497259619.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles L. Merwin, 1942. "Financing Small Corporations in Five Manufacturing Industries, 1926–36," NBER Books, National Bureau of Economic Research, Inc, number merw42-1.
    2. Kraus, Alan & Litzenberger, Robert H, 1973. "A State-Preference Model of Optimal Financial Leverage," Journal of Finance, American Finance Association, vol. 28(4), pages 911-922, September.
    3. Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, Wiley Blackwell, vol. 10(1), pages 167-179.
    4. Andreas Charitou & Evi Neophytou & Chris Charalambous, 2004. "Predicting corporate failure: empirical evidence for the UK," European Accounting Review, Taylor & Francis Journals, vol. 13(3), pages 465-497.
    5. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    6. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    7. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    8. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jackson, Richard H.G. & Wood, Anthony, 2013. "The performance of insolvency prediction and credit risk models in the UK: A comparative study," The British Accounting Review, Elsevier, vol. 45(3), pages 183-202.
    2. George Giannopoulos & Sophia Ali Sardar & Rebecca Salti & Nicos Sykianakis, 2022. "Analyzing Insolvency Prediction Models in the Period Before and After the Financial Crisis: A Case Study on the Example of US Firms," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 12(3), pages 23-45.
    3. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    4. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    5. Khoja, Layla & Chipulu, Maxwell & Jayasekera, Ranadeva, 2019. "Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data," International Review of Financial Analysis, Elsevier, vol. 66(C).
    6. Alessandra Amendola & Francesco Giordano & Maria Lucia Parrella & Marialuisa Restaino, 2017. "Variable selection in high‐dimensional regression: a nonparametric procedure for business failure prediction," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(4), pages 355-368, August.
    7. Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.
    8. Andrzej Geise & Magdalena Kuczmarska & Jarosław Pawlowski, 2021. "Corporate Failure Prediction of Construction Companies in Poland: Evidence from Logit Model," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 99-116.
    9. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    10. Juraini Zainol Abidin & Nur Adiana Hiau Abdullah & Karren Lee-Hwei Khaw, 2020. "Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models," Capital Markets Review, Malaysian Finance Association, vol. 28(2), pages 29-41.
    11. Amin Jan & Maran Marimuthu & Muhammad Kashif Shad & Haseeb ur-Rehman & Muhammad Zahid & Ahmad Ali Jan, 2019. "Bankruptcy profile of the Islamic and conventional banks in Malaysia: a post-crisis period analysis," Economic Change and Restructuring, Springer, vol. 52(1), pages 67-87, February.
    12. Juan García Lara & Beatriz Osma & Evi Neophytou, 2009. "Earnings quality in ex‐post failed firms," Accounting and Business Research, Taylor & Francis Journals, vol. 39(2), pages 119-138.
    13. García-Gallego, Ana & Mures-Quintana, María-Jesús, 2013. "La muestra de empresas en los modelos de predicción del fracaso: influencia en los resultados de clasificación || The Sample of Firms in Business Failure Prediction Models: Influence on Classification," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 133-150, June.
    14. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    15. Richard Evans, 2024. "The S-Score of Financial Sustainability for Professional Football Clubs," Journal of Sports Economics, , vol. 25(3), pages 322-345, April.
    16. Sanjay Sehgal & Ritesh Kumar Mishra & Ajay Jaisawal, 2021. "A search for macroeconomic determinants of corporate financial distress," Indian Economic Review, Springer, vol. 56(2), pages 435-461, December.
    17. Sumaira Ashraf & Elisabete G. S. Félix & Zélia Serrasqueiro, 2019. "Do Traditional Financial Distress Prediction Models Predict the Early Warning Signs of Financial Distress?," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    18. Apostolos G. Christopoulos & Ioannis G. Dokas & Iraklis Kollias & John Leventides, 2019. "An implementation of Soft Set Theory in the Variables Selection Process for Corporate Failure Prediction Models. Evidence from NASDAQ Listed Firms," Bulletin of Applied Economics, Risk Market Journals, vol. 6(1), pages 1-20.
    19. Jairaj Gupta & Nicholas Wilson & Andros Gregoriou & Jerome Healy, 2014. "The value of operating cash flow in modelling credit risk for SMEs," Applied Financial Economics, Taylor & Francis Journals, vol. 24(9), pages 649-660, May.
    20. Josep Patau & Antonio Somoza & Salvador Torra, 2020. "Diagnosis of the Domino Effect in Bankruptcy Situations Through Positioning Maps and Their Evolution 10 Years Later," SAGE Open, , vol. 10(4), pages 21582440209, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rss:jnljms:v3i10p4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Danish Khalil (email available below). General contact details of provider: http://www.rassweb.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.