IDEAS home Printed from
   My bibliography  Save this article

The new approaches in econometric research of financial markets. Distributed volatility


  • V. I. Tinyakova

    () (Chair of Information Technologies and Mathematical Methods in Economy, Voronezh State University (Voronezh, Russia))


Volatility is one of the most important characteristics of any financial instrument return. The idea which states that all information about financial assets is contained in its price is implemented in current approaches to modeling the volatility of financial assets and it corresponds well with the efficient market hypothesis. Therefore, all volatility models use only the information contained in the price of the asset is being modeled. In this paper we propose an approach that implements the assumption that the volatility of an asset depends on the market volatility. But the relationship is not correlation-regression, though this may exist, but is probabilistic, in the sense that the probability of the high volatility of any asset increases with the volatility of the financial market. To implement this approach, a model which helps to evaluate the distributed volatility is offered. Distributed volatility, however, as VaR, helps to evaluate the positive and negative part of volatility, but unlike VaR, describes volatility dynamics. So it allows forecast calculation of the financial asset volatility, particularly in estimation of the intrinsic value of stock options.

Suggested Citation

  • V. I. Tinyakova, 2012. "The new approaches in econometric research of financial markets. Distributed volatility," Review of Applied Socio-Economic Research, Pro Global Science Association, vol. 4(2), pages 247-255, Decembre.
  • Handle: RePEc:rse:wpaper:v:4:y:2012:i:2:p:247-255

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Satchell, Stephen & Knight, John, 2007. "Forecasting Volatility in the Financial Markets," Elsevier Monographs, Elsevier, edition 3, number 9780750669429, August.
    2. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    3. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item


    volatility; distributed volatility; forecast estimation of volatility; financial market; VaR; Black-Scholes formula; CRR-model; model ARCH;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rse:wpaper:v:4:y:2012:i:2:p:247-255. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Manuela Epure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.