IDEAS home Printed from https://ideas.repec.org/a/plo/pwat00/0000169.html
   My bibliography  Save this article

Deep reinforcement learning for irrigation scheduling using high-dimensional sensor feedback

Author

Listed:
  • Yuji Saikai
  • Allan Peake
  • Karine Chenu

Abstract

Deep reinforcement learning has considerable potential to improve irrigation scheduling in many cropping systems by applying adaptive amounts of water based on various measurements over time. The goal is to discover an intelligent decision rule that processes information available to growers and prescribes sensible irrigation amounts for the time steps considered. Due to the technical novelty, however, the research on the technique remains sparse and impractical. To accelerate the progress, the paper proposes a principled framework and actionable procedure that allow researchers to formulate their own optimisation problems and implement solution algorithms based on deep reinforcement learning. The effectiveness of the framework was demonstrated using a case study of irrigated wheat grown in a productive region of Australia where profits were maximised. Specifically, the decision rule takes nine state variable inputs: crop phenological stage, leaf area index, extractable soil water for each of the five top layers, cumulative rainfall and cumulative irrigation. It returns a probabilistic prescription over five candidate irrigation amounts (0, 10, 20, 30 and 40 mm) every day. The production system was simulated at Goondiwindi using the APSIM-Wheat crop model. After training in the learning environment using 1981–2010 weather data, the learned decision rule was tested individually for each year of 2011–2020. The results were compared against the benchmark profits obtained by a conventional rule common in the region. The discovered decision rule prescribed daily irrigation amounts that uniformly improved on the conventional rule for all the testing years, and the largest improvement reached 17% in 2018. The framework is general and applicable to a wide range of cropping systems with realistic optimisation problems.

Suggested Citation

  • Yuji Saikai & Allan Peake & Karine Chenu, 2023. "Deep reinforcement learning for irrigation scheduling using high-dimensional sensor feedback," PLOS Water, Public Library of Science, vol. 2(9), pages 1-20, September.
  • Handle: RePEc:plo:pwat00:0000169
    DOI: 10.1371/journal.pwat.0000169
    as

    Download full text from publisher

    File URL: https://journals.plos.org/water/article?id=10.1371/journal.pwat.0000169
    Download Restriction: no

    File URL: https://journals.plos.org/water/article/file?id=10.1371/journal.pwat.0000169&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pwat.0000169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alibabaei, Khadijeh & Gaspar, Pedro D. & Assunção, Eduardo & Alirezazadeh, Saeid & Lima, Tânia M., 2022. "Irrigation optimization with a deep reinforcement learning model: Case study on a site in Portugal," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Li, Yaohui & Shi, Junjun & Cen, Hui & Shen, Jingfang & Chao, Yanpu, 2021. "A kriging-based adaptive global optimization method with generalized expected improvement and its application in numerical simulation and crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    2. Chen, Yi & Lin, Meiwei & Yu, Zhuo & Sun, Weihong & Fu, Weiguo & He, Liang, 2025. "Enhancing cotton irrigation with distributional actor–critic reinforcement learning," Agricultural Water Management, Elsevier, vol. 307(C).
    3. Yaohui Li & Junjun Shi & Zhifeng Yin & Jingfang Shen & Yizhong Wu & Shuting Wang, 2021. "An Improved High-Dimensional Kriging Surrogate Modeling Method through Principal Component Dimension Reduction," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    4. Guilherme Jesus & Martim L. Aguiar & Pedro D. Gaspar, 2022. "Computational Tool to Support the Decision in the Selection of Alternative and/or Sustainable Refrigerants," Energies, MDPI, vol. 15(22), pages 1-20, November.
    5. Eduardo Assunção & Pedro D. Gaspar & Khadijeh Alibabaei & Maria P. Simões & Hugo Proença & Vasco N. G. J. Soares & João M. L. P. Caldeira, 2022. "Real-Time Image Detection for Edge Devices: A Peach Fruit Detection Application," Future Internet, MDPI, vol. 14(11), pages 1-12, November.
    6. Danyang Gao & Albert S. Chen & Fayyaz Ali Memon, 2024. "A Systematic Review of Methods for Investigating Climate Change Impacts on Water-Energy-Food Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 1-43, January.
    7. Li Lu & Yizhong Wu & Qi Zhang & Ping Qiao, 2023. "A Transformation-Based Improved Kriging Method for the Black Box Problem in Reliability-Based Design Optimization," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
    8. Muhammad Alkaff & Abdullah Basuhail & Yuslena Sari, 2025. "Optimizing Water Use in Maize Irrigation with Reinforcement Learning," Mathematics, MDPI, vol. 13(4), pages 1-21, February.
    9. Umutoni, Lisa & Samadi, Vidya, 2024. "Application of machine learning approaches in supporting irrigation decision making: A review," Agricultural Water Management, Elsevier, vol. 294(C).
    10. Bounajra, Afaf & Guemmat, Kamal El & Mansouri, Khalifa & Akef, Fatiha, 2024. "Towards efficient irrigation management at field scale using new technologies: A systematic literature review," Agricultural Water Management, Elsevier, vol. 295(C).
    11. Xiaodong Song & Mingyang Li & Zhitao Li & Fang Liu, 2021. "Global Optimization Algorithm Based on Kriging Using Multi-Point Infill Sampling Criterion and Its Application in Transportation System," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    12. Li Lu & Yizhong Wu & Qi Zhang & Zhehao Xia & Ping Qiao, 2024. "A response band-based method for time-dependent reliability-based robust design optimization," Journal of Risk and Reliability, , vol. 238(3), pages 559-577, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pwat00:0000169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: water (email available below). General contact details of provider: https://journals.plos.org/water .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.