IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v238y2024i3p559-577.html
   My bibliography  Save this article

A response band-based method for time-dependent reliability-based robust design optimization

Author

Listed:
  • Li Lu
  • Yizhong Wu
  • Qi Zhang
  • Zhehao Xia
  • Ping Qiao

Abstract

In this paper, a response band-based method for time-dependent reliability-based robust design optimization is proposed. The proposed method provides a novel alternative framework, consist of a two-step transformation stage and a solving stage, to solve the time-dependent reliability-based robust design optimization problem. The original time-dependent reliability-based robust design optimization problem is transformed into an equivalent deterministic robust design optimization problem in the transformation stage, and the equivalent problem is settled in the solving stage. In the transformation stage, the dynamic modal decomposition technique and the kriging technique are combined to overcome the problem that there is no standard for both time division and observation sampling in the commonly used transformation methods. In the solving stage, an approach for constructing the response band of the objective function is presented, which significantly reduces the computational consumption of the variation evaluation of the objective function. Five cases are employed to verify the effectiveness of the proposed method.

Suggested Citation

  • Li Lu & Yizhong Wu & Qi Zhang & Zhehao Xia & Ping Qiao, 2024. "A response band-based method for time-dependent reliability-based robust design optimization," Journal of Risk and Reliability, , vol. 238(3), pages 559-577, June.
  • Handle: RePEc:sae:risrel:v:238:y:2024:i:3:p:559-577
    DOI: 10.1177/1748006X231162127
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X231162127
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X231162127?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xiaobo & Lu, Zhenzhou & Cheng, Kai, 2021. "Reliability index function approximation based on adaptive double-loop Kriging for reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Li, Yaohui & Shi, Junjun & Cen, Hui & Shen, Jingfang & Chao, Yanpu, 2021. "A kriging-based adaptive global optimization method with generalized expected improvement and its application in numerical simulation and crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 245(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaohui Li & Junjun Shi & Zhifeng Yin & Jingfang Shen & Yizhong Wu & Shuting Wang, 2021. "An Improved High-Dimensional Kriging Surrogate Modeling Method through Principal Component Dimension Reduction," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    2. Van Huynh, Thu & Tangaramvong, Sawekchai & Do, Bach & Gao, Wei & Limkatanyu, Suchart, 2023. "Sequential most probable point update combining Gaussian process and comprehensive learning PSO for structural reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Okoro, Aghatise & Khan, Faisal & Ahmed, Salim, 2023. "Dependency effect on the reliability-based design optimization of complex offshore structure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Wang, Xiaoping & Zhao, Wei & Chen, Yangyang & Li, Xueyan, 2024. "A novel performance measure approach for reliability-based design optimization with adaptive Barzilai-Borwein steps," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    5. Yuji Saikai & Allan Peake & Karine Chenu, 2023. "Deep reinforcement learning for irrigation scheduling using high-dimensional sensor feedback," PLOS Water, Public Library of Science, vol. 2(9), pages 1-20, September.
    6. Hong, Fangqi & Wei, Pengfei & Fu, Jiangfeng & Beer, Michael, 2024. "A sequential sampling-based Bayesian numerical method for reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    7. Hu, Huanhuan & Wang, Pan & Xin, Fukang & Zhang, Lei & Yang, Weizhu & Li, Lei, 2024. "Hybrid adaptive moment estimation based performance measure approach for complex reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    8. Baklouti, Ahmad & Dammak, Khalil & El Hami, Abdelkhalak, 2022. "Optimum reliable design of rolling element bearings using multi-objective optimization based on C-NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    9. Wang, Xuan & Shi, Yuankun & Meng, Zeng & Yang, Bo & Long, Kai, 2025. "Uncertainty-oriented topology optimization of dynamic structures considering hybrid uncertainty of probability and random field," Reliability Engineering and System Safety, Elsevier, vol. 256(C).
    10. Shirgir, Sina & Shamsaddinlou, Amir & Zare, Reza Najafi & Zehtabiyan, Sorour & Bonab, Masoud Hajialilue, 2023. "An efficient double-loop reliability-based optimization with metaheuristic algorithms to design soil nail walls under uncertain condition," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    11. Lai, Xiongming & Yang, Tao & Zhang, Yong & Wang, Cheng & Liao, Shuirong & Zeng, Xianbiao & Zhang, Xiaodong, 2025. "A new hybrid inverse reliability method for searching MPTP and its application in reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    12. Jiang, Zhiyuan & Huang, Xianzhen & Wang, Bingxiang & Liao, Xin & Liu, Huizhen & Ding, Pengfei, 2024. "Time-dependent reliability-based design optimization of main shaft bearings in wind turbines involving mixed-integer variables," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Li Lu & Yizhong Wu & Qi Zhang & Ping Qiao, 2023. "A Transformation-Based Improved Kriging Method for the Black Box Problem in Reliability-Based Design Optimization," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
    14. Zhang, Xiaobo & Lu, Zhenzhou & Cheng, Kai, 2022. "Cross-entropy-based directional importance sampling with von Mises-Fisher mixture model for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Zhang, Zheng & Wang, Pan & Hu, Huanhuan & Li, Lei & Li, Haihe & Yue, Zhufeng, 2022. "Efficient reliability-based design optimization for hydraulic pipeline with adaptive sampling region," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Wu, Xi-Long & Xu, Chang & Li, Hong-Shuang & Zhao, Zhen-Zhou, 2023. "Reliability-based design optimization using adaptive Kriging-A single-loop strategy and a double-loop one," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Zhao, Zhao & Zhao, Yan-Gang & Li, Pei-Pei, 2023. "A novel decoupled time-variant reliability-based design optimization approach by improved extreme value moment method," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    18. Xiaodong Song & Mingyang Li & Zhitao Li & Fang Liu, 2021. "Global Optimization Algorithm Based on Kriging Using Multi-Point Infill Sampling Criterion and Its Application in Transportation System," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    19. Qi, Yaqun & Jin, Ping & Cai, Guobiao & Li, Ruizhi, 2022. "A Bi-stage Multi-objective Reliability-based Design Optimization Using Surrogate Model for Reusable Thrust Chambers," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. He, Jingran & Gao, Ruofan & Chen, Jianbing, 2022. "A sparse data-driven stochastic damage model for seismic reliability assessment of reinforced concrete structures," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:238:y:2024:i:3:p:559-577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.