IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0330175.html
   My bibliography  Save this article

On nonparametric estimating ROC curve based on non-uniform rational B-spline

Author

Listed:
  • Mahmut Sami Erdoğan

Abstract

The receiver operating characteristic (ROC) curve is a commonly used statistical method to assess the efficacy of a diagnostic test or biomarker measured on a continuous scale. This work presents a versatile approach using a non-uniform rational B-spline (NURBS) for estimating the ROC curve. This approach uses control points, weights, and the knot sequence to more accurately estimate the true ROC curve. The new method applies linear constraints to the NURBS basis function coefficients to smooth the empirical ROC curve and guarantee a non-decreasing function. Moreover, as a specific case, a NURBS curve devoid of interior knots simplifies to the Bernstein polynomial when all weight values are equal. We conduct Monte Carlo simulation studies to evaluate how well the NURBS-based estimator works in different scenarios. We compare our estimator to the empirical ROC, the kernel-based ROC, and Bernstein polynomial estimators in terms of the averaged squared errors. We also apply our method to two real medical datasets, such as metastatic kidney cancer and diffuse large B-cell lymphoma datasets. According to the findings from both the real and simulated data, the NURBS method is a powerful alternative for estimating the ROC curve.

Suggested Citation

  • Mahmut Sami Erdoğan, 2025. "On nonparametric estimating ROC curve based on non-uniform rational B-spline," PLOS ONE, Public Library of Science, vol. 20(8), pages 1-16, August.
  • Handle: RePEc:plo:pone00:0330175
    DOI: 10.1371/journal.pone.0330175
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0330175
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0330175&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0330175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lloyd, Chris J. & Yong, Zhou, 1999. "Kernel estimators of the ROC curve are better than empirical," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 221-228, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa–María Molanes-López & Ricardo Cao, 2008. "Relative density estimation for left truncated and right censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 693-720.
    2. Chen, Xiwei & Vexler, Albert & Markatou, Marianthi, 2015. "Empirical likelihood ratio confidence interval estimation of best linear combinations of biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 186-198.
    3. Lloyd, Chris J., 2002. "Estimation of a convex ROC curve," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 99-111, August.
    4. Arís Fanjul-Hevia & Wenceslao González-Manteiga, 2018. "A comparative study of methods for testing the equality of two or more ROC curves," Computational Statistics, Springer, vol. 33(1), pages 357-377, March.
    5. Rufibach Kaspar, 2012. "A Smooth ROC Curve Estimator Based on Log-Concave Density Estimates," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-29, April.
    6. Douglas Mossman & Hongying Peng, 2016. "Using Dual Beta Distributions to Create “Proper†ROC Curves Based on Rating Category Data," Medical Decision Making, , vol. 36(3), pages 349-365, April.
    7. Funke, Benedikt & Palmes, Christian, 2017. "A note on estimating cumulative distribution functions by the use of convolution power kernels," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 90-98.
    8. Hall, Peter G. & Hyndman, Rob J., 2003. "Improved methods for bandwidth selection when estimating ROC curves," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 181-189, August.
    9. Alicja Jokiel-Rokita & Rafał Topolnicki, 2019. "Minimum distance estimation of the binormal ROC curve," Statistical Papers, Springer, vol. 60(6), pages 2161-2183, December.
    10. Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
    11. Yousef, Waleed A. & Kundu, Subrata & Wagner, Robert F., 2009. "Nonparametric estimation of the threshold at an operating point on the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4370-4383, October.
    12. Yang, Hanfang & Zhao, Yichuan, 2013. "Smoothed jackknife empirical likelihood inference for the difference of ROC curves," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 270-284.
    13. Yang, Hanfang & Zhao, Yichuan, 2012. "Smoothed empirical likelihood for ROC curves with censored data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 254-263.
    14. Yang, Hanfang & Zhao, Yichuan, 2015. "Smoothed jackknife empirical likelihood inference for ROC curves with missing data," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 123-138.
    15. Gong, Yun & Peng, Liang & Qi, Yongcheng, 2010. "Smoothed jackknife empirical likelihood method for ROC curve," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1520-1531, July.
    16. Michał Pulit, 2016. "A new method of kernel-smoothing estimation of the ROC curve," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 603-634, July.
    17. Kang, Le & Tian, Lili, 2013. "Estimation of the volume under the ROC surface with three ordinal diagnostic categories," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 39-51.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0330175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.