IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0315762.html
   My bibliography  Save this article

Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics

Author

Listed:
  • Dinh Viet Cuong
  • Branislava Lalić
  • Mina Petrić
  • Nguyen Thanh Binh
  • Mark Roantree

Abstract

Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The integration of physics principles enables the method to require less data while maintaining the robustness of deep learning in modelling complex dynamical systems. However, current PINN frameworks are not sufficiently mature for real-world ODE systems, especially those with extreme multi-scale behavior such as mosquito population dynamical modelling. In this research, we propose a PINN framework with several improvements for forward and inverse problems for ODE systems with a case study application in modelling the dynamics of mosquito populations. The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations. The method offers a simple but effective way to resolve the time causality issue in PINNs by gradually expanding the training time domain until it covers entire domain of interest. As part of a robust evaluation, we conduct experiments using simulated data to evaluate the effectiveness of the approach. Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.

Suggested Citation

  • Dinh Viet Cuong & Branislava Lalić & Mina Petrić & Nguyen Thanh Binh & Mark Roantree, 2024. "Adapting physics-informed neural networks to improve ODE optimization in mosquito population dynamics," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-30, December.
  • Handle: RePEc:plo:pone00:0315762
    DOI: 10.1371/journal.pone.0315762
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0315762
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0315762&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0315762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Annelise Tran & Grégory L'Ambert & Guillaume Lacour & Romain Benoît & Marie Demarchi & Myriam Cros & Priscilla Cailly & Mélaine Aubry-Kientz & Thomas Balenghien & Pauline Ezanno, 2013. "A Rainfall- and Temperature-Driven Abundance Model for Aedes albopictus Populations," IJERPH, MDPI, vol. 10(5), pages 1-22, April.
    2. Erickson, Richard A. & Presley, Steven M. & Allen, Linda J.S. & Long, Kevin R. & Cox, Stephen B., 2010. "A dengue model with a dynamic Aedes albopictus vector population," Ecological Modelling, Elsevier, vol. 221(24), pages 2899-2908.
    3. Erickson, Richard A. & Presley, Steven M. & Allen, Linda J.S. & Long, Kevin R. & Cox, Stephen B., 2010. "A stage-structured, Aedes albopictus population model," Ecological Modelling, Elsevier, vol. 221(9), pages 1273-1282.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josef Zapletal & Himanshu Gupta & Madhav Erraguntla & Zach N Adelman & Kevin M Myles & Mark A Lawley, 2019. "Predicting aquatic development and mortality rates of Aedes aegypti," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-8, May.
    2. Josef Zapletal & Madhav Erraguntla & Zach N Adelman & Kevin M Myles & Mark A Lawley, 2018. "Impacts of diurnal temperature and larval density on aquatic development of Aedes aegypti," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-16, March.
    3. Erickson, Richard A. & Presley, Steven M. & Allen, Linda J.S. & Long, Kevin R. & Cox, Stephen B., 2010. "A dengue model with a dynamic Aedes albopictus vector population," Ecological Modelling, Elsevier, vol. 221(24), pages 2899-2908.
    4. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    5. Céline Christiansen-Jucht & Kamil Erguler & Chee Yan Shek & María-Gloria Basáñez & Paul E. Parham, 2015. "Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival," IJERPH, MDPI, vol. 12(6), pages 1-31, May.
    6. Beniamino Caputo & Mattia Manica & Federico Filipponi & Marta Blangiardo & Pietro Cobre & Luca Delucchi & Carlo Maria De Marco & Luca Iesu & Paola Morano & Valeria Petrella & Marco Salvemini & Cesare , 2020. "ZanzaMapp: A Scalable Citizen Science Tool to Monitor Perception of Mosquito Abundance and Nuisance in Italy and Beyond," IJERPH, MDPI, vol. 17(21), pages 1-19, October.
    7. Haocheng Wu & Chen Wu & Qinbao Lu & Zheyuan Ding & Ming Xue & Junfen Lin, 2019. "Evaluating the effects of control interventions and estimating the inapparent infections for dengue outbreak in Hangzhou, China," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-16, August.
    8. Fátima Goiri & Mikel Alexander González & Joseba Goikolea & Madalen Oribe & Visitación de Castro & Sarah Delacour & Javier Lucientes & Ione Ortega-Araiztegi & Jesús Felix Barandika & Ana Luisa García-, 2020. "Progressive Invasion of Aedes albopictus in Northern Spain in The Period 2013–2018 and A Possible Association with The Increase in Insect Bites," IJERPH, MDPI, vol. 17(5), pages 1-14, March.
    9. LonÄ arić, Željka & K. Hackenberger, Branimir, 2013. "Stage and age structured Aedes vexans and Culex pipiens (Diptera: Culicidae) climate-dependent matrix population model," Theoretical Population Biology, Elsevier, vol. 83(C), pages 82-94.
    10. Jan C. Semenza, 2015. "Prototype Early Warning Systems for Vector-Borne Diseases in Europe," IJERPH, MDPI, vol. 12(6), pages 1-19, June.
    11. Lembris Laanyuni Njotto & Wilfred Senyoni & Ottmar Cronie & Michael Alifrangis & Anna-Sofie Stensgaard, 2024. "Quantitative modelling for dengue and Aedes mosquitoes in Africa: A systematic review of current approaches and future directions for Early Warning System development," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 18(11), pages 1-22, November.
    12. Tiago França Melo De Lima & Raquel Martins Lana & Tiago Garcia De Senna Carneiro & Cláudia Torres Codeço & Gabriel Souza Machado & Lucas Saraiva Ferreira & Líliam César De Castro Medeiros & Clodoveu A, 2016. "DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics," IJERPH, MDPI, vol. 13(9), pages 1-21, September.
    13. Walker, Melody & Robert, Michael A. & Childs, Lauren M., 2021. "The importance of density dependence in juvenile mosquito development and survival: A model-based investigation," Ecological Modelling, Elsevier, vol. 440(C).
    14. Zheng, Bo & Yu, Jianshe & Xi, Zhiyong & Tang, Moxun, 2018. "The annual abundance of dengue and Zika vector Aedes albopictus and its stubbornness to suppression," Ecological Modelling, Elsevier, vol. 387(C), pages 38-48.
    15. Giovanni Marini & Piero Poletti & Mario Giacobini & Andrea Pugliese & Stefano Merler & Roberto Rosà, 2016. "The Role of Climatic and Density Dependent Factors in Shaping Mosquito Population Dynamics: The Case of Culex pipiens in Northwestern Italy," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-15, April.
    16. Lingcai Kong & Jinfeng Wang & Zhongjie Li & Shengjie Lai & Qiyong Liu & Haixia Wu & Weizhong Yang, 2018. "Modeling the Heterogeneity of Dengue Transmission in a City," IJERPH, MDPI, vol. 15(6), pages 1-21, May.
    17. Jeon-Young Kang & Jared Aldstadt, 2017. "The Influence of Spatial Configuration of Residential Area and Vector Populations on Dengue Incidence Patterns in an Individual-Level Transmission Model," IJERPH, MDPI, vol. 14(7), pages 1-14, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0315762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.