IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0312814.html
   My bibliography  Save this article

Short-term forecasting of solar irradiance using decision tree-based models and non-parametric quantile regression

Author

Listed:
  • Amon Masache
  • Precious Mdlongwa
  • Daniel Maposa
  • Caston Sigauke

Abstract

The renewable energy industry requires accurate forecasts of intermittent solar irradiance (SI) to effectively manage solar power generation and supply. Introducing the random forests (RFs) model and its hybridisation with quantile regression modelling, the quantile regression random forest (QRRF), can help improve the forecasts’ accuracy. This paper assesses the RFs and QRRF models against the quantile generalised additive model (QGAM) by evaluating their forecast performances. A simulation study of multivariate data-generating processes was carried out to compare the forecasting accuracy of the models when predicting global horizontal solar irradiance. The QRRF and QGAM are completely new forecasting frameworks for SI studies, to the best of our knowledge. Simulation results suggested that the introduced QRRF compared well with the QGAM when predicting the forecast distribution. However, the evaluations of the pinball loss scores and mean absolute scaled errors demonstrated a clear superiority of the QGAM. Similar results were obtained in an application to real-life data. Therefore, we recommend that the QGAM be preferred ahead of decision tree-based models when predicting solar irradiance. However, the QRRF model can be used alternatively to predict the forecast distribution. Both the QGAM and QRRF modelling frameworks went beyond representing forecast uncertainty of SI as probability distributions around a prediction interval to give complete information through the estimation of quantiles. Most SI studies conducted are residual and/or non-parametric modelling that are limited to represent information about the conditional mean distribution. Extensions of the QRRF and QGAM frameworks can be made to model other renewable sources of energy that have meteorological characteristics similar to solar irradiance.

Suggested Citation

  • Amon Masache & Precious Mdlongwa & Daniel Maposa & Caston Sigauke, 2024. "Short-term forecasting of solar irradiance using decision tree-based models and non-parametric quantile regression," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-29, December.
  • Handle: RePEc:plo:pone00:0312814
    DOI: 10.1371/journal.pone.0312814
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0312814
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0312814&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0312814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cecilia Martinez-Castillo & Gonzalo Astray & Juan Carlos Mejuto, 2021. "Modelling and Prediction of Monthly Global Irradiation Using Different Prediction Models," Energies, MDPI, vol. 14(8), pages 1-16, April.
    2. Eric W Fox & Jay M Ver Hoef & Anthony R Olsen, 2020. "Comparing spatial regression to random forests for large environmental data sets," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-22, March.
    3. Matteo Fasiolo & Simon N. Wood & Margaux Zaffran & Raphaël Nedellec & Yannig Goude, 2021. "Fast Calibrated Additive Quantile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1402-1412, July.
    4. Haozhe Zhang & Joshua Zimmerman & Dan Nettleton & Daniel J. Nordman, 2020. "Random Forest Prediction Intervals," The American Statistician, Taylor & Francis Journals, vol. 74(4), pages 392-406, October.
    5. Phathutshedzo Mpfumali & Caston Sigauke & Alphonce Bere & Sophie Mulaudzi, 2019. "Day Ahead Hourly Global Horizontal Irradiance Forecasting—Application to South African Data," Energies, MDPI, vol. 12(18), pages 1-28, September.
    6. Francesco Cusano & Giuseppe Marinelli & Stefano Piermattei, 2022. "Learning from revisions: an algorithm to detect errors in banks’ balance sheet statistical reporting," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4025-4059, December.
    7. Sanlei Dang & Long Peng & Jingming Zhao & Jiajie Li & Zhengmin Kong, 2022. "A Quantile Regression Random Forest-Based Short-Term Load Probabilistic Forecasting Method," Energies, MDPI, vol. 15(2), pages 1-20, January.
    8. Fouilloy, Alexis & Voyant, Cyril & Notton, Gilles & Motte, Fabrice & Paoli, Christophe & Nivet, Marie-Laure & Guillot, Emmanuel & Duchaud, Jean-Laurent, 2018. "Solar irradiation prediction with machine learning: Forecasting models selection method depending on weather variability," Energy, Elsevier, vol. 165(PA), pages 620-629.
    9. Arlen Dean & Amirhossein Meisami & Henry Lam & Mark P. Van Oyen & Christopher Stromblad & Nick Kastango, 2022. "Quantile regression forests for individualized surgery scheduling," Health Care Management Science, Springer, vol. 25(4), pages 682-709, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Puah, Boon Keat & Chong, Lee Wai & Wong, Yee Wan & Begam, K.M. & Khan, Nafizah & Juman, Mohammed Ayoub & Rajkumar, Rajprasad Kumar, 2021. "A regression unsupervised incremental learning algorithm for solar irradiance prediction," Renewable Energy, Elsevier, vol. 164(C), pages 908-925.
    2. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    3. Acharki, Naoufal & Bertoncello, Antoine & Garnier, Josselin, 2023. "Robust prediction interval estimation for Gaussian processes by cross-validation method," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    4. Fábio Antônio do Nascimento Setúbal & Sérgio de Souza Custódio Filho & Newton Sure Soeiro & Alexandre Luiz Amarante Mesquita & Marcus Vinicius Alves Nunes, 2022. "Force Identification from Vibration Data by Response Surface and Random Forest Regression Algorithms," Energies, MDPI, vol. 15(10), pages 1-15, May.
    5. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    6. Jean-Laurent Duchaud & Cyril Voyant & Alexis Fouilloy & Gilles Notton & Marie-Laure Nivet, 2020. "Trade-Off between Precision and Resolution of a Solar Power Forecasting Algorithm for Micro-Grid Optimal Control," Energies, MDPI, vol. 13(14), pages 1-16, July.
    7. Gairaa, Kacem & Voyant, Cyril & Notton, Gilles & Benkaciali, Saïd & Guermoui, Mawloud, 2022. "Contribution of ordinal variables to short-term global solar irradiation forecasting for sites with low variabilities," Renewable Energy, Elsevier, vol. 183(C), pages 890-902.
    8. Boumediene Ladjal & Imad Eddine Tibermacine & Mohcene Bechouat & Moussa Sedraoui & Christian Napoli & Abdelaziz Rabehi & Djemoui Lalmi, 2024. "Hybrid models for direct normal irradiance forecasting: a case study of Ghardaia zone (Algeria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14703-14725, December.
    9. Katharina Schulze & Žiga Malek & Dmitry Schepaschenko & Myroslava Lesiv & Steffen Fritz & Peter H. Verburg, 2023. "Pantropical distribution of short-rotation woody plantations: spatial probabilities under current and future climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    10. Manoel Henriques de Sá Campos & Chigueru Tiba, 2020. "Global Horizontal Irradiance Modeling for All Sky Conditions Using an Image-Pixel Approach," Energies, MDPI, vol. 13(24), pages 1-15, December.
    11. Rodríguez, Fermín & Martín, Fernando & Fontán, Luis & Galarza, Ainhoa, 2021. "Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power," Energy, Elsevier, vol. 229(C).
    12. Wang, Shuhao & Peng, Jinqing & Luo, Yimo & Ma, Tao & Xue, Peng & Wu, Yupeng & Zhang, Qiangzhi & Zhou, Jiayu, 2024. "Development of an engineering-friendly evaluation model for solar spectral irradiance using readily accessible subaerial meteorology," Renewable Energy, Elsevier, vol. 237(PA).
    13. Nosipho Zwane & Henerica Tazvinga & Christina Botai & Miriam Murambadoro & Joel Botai & Jaco de Wit & Brighton Mabasa & Siphamandla Daniel & Tafadzwanashe Mabhaudhi, 2022. "A Bibliometric Analysis of Solar Energy Forecasting Studies in Africa," Energies, MDPI, vol. 15(15), pages 1-23, July.
    14. Ines Sansa & Zina Boussaada & Najiba Mrabet Bellaaj, 2021. "Solar Radiation Prediction Using a Novel Hybrid Model of ARMA and NARX," Energies, MDPI, vol. 14(21), pages 1-26, October.
    15. Castiglione, Cristian & Arnone, Eleonora & Bernardi, Mauro & Farcomeni, Alessio & Sangalli, Laura M., 2025. "PDE-regularised spatial quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 205(C).
    16. Damilola Elizabeth Babatunde & Ambrose Anozie & James Omoleye, 2020. "Artificial Neural Network and its Applications in the Energy Sector An Overview," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 250-264.
    17. Giorgio Guariso & Giuseppe Nunnari & Matteo Sangiorgio, 2020. "Multi-Step Solar Irradiance Forecasting and Domain Adaptation of Deep Neural Networks," Energies, MDPI, vol. 13(15), pages 1-18, August.
    18. Sonia Montecinos & Carlos Rodríguez & Andrea Torrejón & Jorge Cortez & Marcelo Jaque, 2024. "Panel Temperature Dependence on Atmospheric Parameters of an Operative Photovoltaic Park in Semi-Arid Zones Using Artificial Neural Networks," Energies, MDPI, vol. 17(23), pages 1-17, November.
    19. Daniel S. Maynard & Lalasia Bialic-Murphy & Constantin M. Zohner & Colin Averill & Johan Hoogen & Haozhi Ma & Lidong Mo & Gabriel Reuben Smith & Alicia T. R. Acosta & Isabelle Aubin & Erika Berenguer , 2022. "Global relationships in tree functional traits," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Bartosz Uniejewski, 2023. "Smoothing Quantile Regression Averaging: A new approach to probabilistic forecasting of electricity prices," Papers 2302.00411, arXiv.org, revised Nov 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0312814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.