IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0311194.html
   My bibliography  Save this article

Short-term power load forecasting in China: A Bi-SATCN neural network model based on VMD-SE

Author

Listed:
  • Yuan Huang
  • Qimeng Feng
  • Feilong Han

Abstract

This study focuses on improving short-term power load forecasting, a critical aspect of power system planning, control, and operation, especially within the context of China’s "dual-carbon" policy. The integration of renewable energy under this policy has introduced complexities such as nonlinearity and instability. To enhance forecasting accuracy, the VMD-SE-BiSATCN prediction model is proposed. This model improves computational efficiency and reduces prediction errors by analyzing and reconstructing sequence component complexity using sample entropy (SE) following variational mode decomposition (VMD). Additionally, a self-attention mechanism is integrated into the temporal convolutional network (TCN) to overcome the traditional TCN’s limitations in capturing long-term dependencies. The model was evaluated using data from the China Ninth Electrical Attribute Modeling Competition and validated with real-world data from a specific county in Shijiazhuang City, Hebei Province, China. Results indicate that the VMD-SE-BiSATCN model outperforms other models, achieving a mean absolute error (MAE) of 92.87, a root mean square error (RMSE) of 126.906, and a mean absolute percentage error (MAPE) of 0.81%.

Suggested Citation

  • Yuan Huang & Qimeng Feng & Feilong Han, 2024. "Short-term power load forecasting in China: A Bi-SATCN neural network model based on VMD-SE," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-24, September.
  • Handle: RePEc:plo:pone00:0311194
    DOI: 10.1371/journal.pone.0311194
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311194
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0311194&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0311194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shizhen Bai & Hao He & Dan Luo & Mengke Ge & Ruobing Yang & Xinrui Bi & Zeljko Stevic, 2022. "A Large-Scale Group Decision-Making Consensus Model considering the Experts’ Adjustment Willingness Based on the Interactive Weights’ Determination," Complexity, Hindawi, vol. 2022, pages 1-26, November.
    2. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    3. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faramarz Saghi & Mustafa Jahangoshai Rezaee, 2023. "Integrating Wavelet Decomposition and Fuzzy Transformation for Improving the Accuracy of Forecasting Crude Oil Price," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 559-591, February.
    2. Dimitrios Mouchtaris & Emmanouil Sofianos & Periklis Gogas & Theophilos Papadimitriou, 2021. "Forecasting Natural Gas Spot Prices with Machine Learning," Energies, MDPI, vol. 14(18), pages 1-13, September.
    3. Yan Yang & Qiang Zhou, 2023. "Modeling and Simulation of Crude Oil Sea–River Transshipment System in China’s Yangtze River Basin," Energies, MDPI, vol. 16(6), pages 1-16, March.
    4. Bingzi Jin & Xiaojie Xu, 2025. "Machine learning price index forecasts of flat steel products," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 38(1), pages 97-117, March.
    5. Oleksandr Castello & Marina Resta, 2023. "A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling," Energies, MDPI, vol. 16(12), pages 1-22, June.
    6. Rabin K. Jana & Indranil Ghosh, 2025. "A residual driven ensemble machine learning approach for forecasting natural gas prices: analyses for pre-and during-COVID-19 phases," Annals of Operations Research, Springer, vol. 345(2), pages 757-778, February.
    7. Yifei Chen & Zhihan Fu, 2023. "Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    8. Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
    9. Wu, Qiuhao & Huang, Wanhao & Dai, Anqi & Ke, Linyao & Zhang, Letian & Zhang, Qi & Cui, Xian & Fan, Liangliang & Xu, Chuangxin & Cobb, Krik & Zou, Rongge & Pan, Xiangwen & Liu, Yuhuan & Ruan, Roger & W, 2024. "Two-step fast pyrolysis of torrefied corncobs and waste cooking oil under different atmosphere for hydrocarbons production," Energy, Elsevier, vol. 286(C).
    10. Barua, Ronil & Sharma, Anil K., 2023. "Using fear, greed and machine learning for optimizing global portfolios: A Black-Litterman approach," Finance Research Letters, Elsevier, vol. 58(PC).
    11. Sadeghi Darvazeh, Saeed & Mansoori Mooseloo, Farzaneh & Gholian-Jouybari, Fatemeh & Amiri, Maghsoud & Bonakdari, Hossein & Hajiaghaei-Keshteli, Mostafa, 2024. "Data-driven robust optimization to design an integrated sustainable forest biomass-to-electricity network under disjunctive uncertainties," Applied Energy, Elsevier, vol. 356(C).
    12. Ren, Jinhui & Zhang, Qianzhi & Chen, Wenying, 2024. "China's provincial power decarbonization transition in a carbon neutral vision," Energy, Elsevier, vol. 310(C).
    13. Ai, Chunyu & He, Shan & Fan, Xiaochao & Wang, Weiqing, 2023. "Chaotic time series wind power prediction method based on OVMD-PE and improved multi-objective state transition algorithm," Energy, Elsevier, vol. 278(C).
    14. Wang, Yue & Wang, Zhong & Luo, Yuyan, 2024. "A hybrid carbon price forecasting model combining time series clustering and data augmentation," Energy, Elsevier, vol. 308(C).
    15. Ouyang, Zisheng & Lu, Min & Ouyang, Zhongzhe & Zhou, Xuewei & Wang, Ren, 2024. "A novel integrated method for improving the forecasting accuracy of crude oil: ESMD-CFastICA-BiLSTM-Attention," Energy Economics, Elsevier, vol. 138(C).
    16. Palma, Alessia & Paltrinieri, Andrea & Goodell, John W. & Oriani, Marco Ercole, 2024. "The black box of natural gas market: Past, present, and future," International Review of Financial Analysis, Elsevier, vol. 94(C).
    17. Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
    18. Lahmiri, Salim, 2024. "Fossil energy market price prediction by using machine learning with optimal hyper-parameters: A comparative study," Resources Policy, Elsevier, vol. 92(C).
    19. Carolina Deina & João Lucas Ferreira dos Santos & Lucas Henrique Biuk & Mauro Lizot & Attilio Converti & Hugo Valadares Siqueira & Flavio Trojan, 2023. "Forecasting Electricity Demand by Neural Networks and Definition of Inputs by Multi-Criteria Analysis," Energies, MDPI, vol. 16(4), pages 1-24, February.
    20. Liu, Tianhong & Qi, Shengli & Qiao, Xianzhu & Liu, Sixing, 2024. "A hybrid short-term wind power point-interval prediction model based on combination of improved preprocessing methods and entropy weighted GRU quantile regression network," Energy, Elsevier, vol. 288(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.