IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0311089.html
   My bibliography  Save this article

A fact based analysis of decision trees for improving reliability in cloud computing

Author

Listed:
  • Muhammad Asim Shahid
  • Muhammad Mansoor Alam
  • Mazliham Mohd Su’ud

Abstract

The popularity of cloud computing (CC) has increased significantly in recent years due to its cost-effectiveness and simplified resource allocation. Owing to the exponential rise of cloud computing in the past decade, many corporations and businesses have moved to the cloud to ensure accessibility, scalability, and transparency. The proposed research involves comparing the accuracy and fault prediction of five machine learning algorithms: AdaBoostM1, Bagging, Decision Tree (J48), Deep Learning (Dl4jMLP), and Naive Bayes Tree (NB Tree). The results from secondary data analysis indicate that the Central Processing Unit CPU-Mem Multi classifier has the highest accuracy percentage and the least amount of fault prediction. This holds for the Decision Tree (J48) classifier with an accuracy rate of 89.71% for 80/20, 90.28% for 70/30, and 92.82% for 10-fold cross-validation. Additionally, the Hard Disk Drive HDD-Mono classifier has an accuracy rate of 90.35% for 80/20, 92.35% for 70/30, and 90.49% for 10-fold cross-validation. The AdaBoostM1 classifier was found to have the highest accuracy percentage and the least amount of fault prediction for the HDD Multi classifier with an accuracy rate of 93.63% for 80/20, 90.09% for 70/30, and 88.92% for 10-fold cross-validation. Finally, the CPU-Mem Mono classifier has an accuracy rate of 77.87% for 80/20, 77.01% for 70/30, and 77.06% for 10-fold cross-validation. Based on the primary data results, the Naive Bayes Tree (NB Tree) classifier is found to have the highest accuracy rate with less fault prediction of 97.05% for 80/20, 96.09% for 70/30, and 96.78% for 10 folds cross-validation. However, the algorithm complexity is not good, taking 1.01 seconds. On the other hand, the Decision Tree (J48) has the second-highest accuracy rate of 96.78%, 95.95%, and 96.78% for 80/20, 70/30, and 10-fold cross-validation, respectively. J48 also has less fault prediction but with a good algorithm complexity of 0.11 seconds. The difference in accuracy and less fault prediction between NB Tree and J48 is only 0.9%, but the difference in time complexity is 9 seconds. Based on the results, we have decided to make modifications to the Decision Tree (J48) algorithm. This method has been proposed as it offers the highest accuracy and less fault prediction errors, with 97.05% accuracy for the 80/20 split, 96.42% for the 70/30 split, and 97.07% for the 10-fold cross-validation.

Suggested Citation

  • Muhammad Asim Shahid & Muhammad Mansoor Alam & Mazliham Mohd Su’ud, 2024. "A fact based analysis of decision trees for improving reliability in cloud computing," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-53, December.
  • Handle: RePEc:plo:pone00:0311089
    DOI: 10.1371/journal.pone.0311089
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311089
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0311089&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0311089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:plo:pone00:0134563 is not listed on IDEAS
    2. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    3. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    5. Haiyan Meng & Yakai Lu & Zhe Tian & Xiangbei Jiang & Zhongqing Han & Jide Niu, 2023. "Performance Evaluation Method of Day-Ahead Load Prediction Models in a District Heating and Cooling System: A Case Study," Energies, MDPI, vol. 16(14), pages 1-19, July.
    6. Joanna Piotrowska-Woroniak & Tomasz Szul, 2022. "Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings," Energies, MDPI, vol. 15(23), pages 1-13, November.
    7. Ling, Jihong & Zhang, Bingyang & Dai, Na & Xing, Jincheng, 2023. "Coupling input feature construction methods and machine learning algorithms for hourly secondary supply temperature prediction," Energy, Elsevier, vol. 278(C).
    8. Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2024. "Hyperparameter Tuning of Load-Forecasting Models Using Metaheuristic Optimization Algorithms—A Systematic Review," Mathematics, MDPI, vol. 12(21), pages 1-51, October.
    9. Sinha, Shruti & Sankar Rao, Chinta & Kumar, Abhishankar & Venkata Surya, Dadi & Basak, Tanmay, 2024. "Exploring and understanding the microwave-assisted pyrolysis of waste lignocellulose biomass using gradient boosting regression machine learning model," Renewable Energy, Elsevier, vol. 231(C).
    10. Zhang, Yunfei & Zhou, Zhihua & Liu, Junwei & Yuan, Jianjuan, 2022. "Data augmentation for improving heating load prediction of heating substation based on TimeGAN," Energy, Elsevier, vol. 260(C).
    11. Liang, Xinbin & Zhu, Xu & Chen, Kang & Chen, Siliang & Jin, Xinqiao & Du, Zhimin, 2023. "Endowing data-driven models with rejection ability: Out-of-distribution detection and confidence estimation for black-box models of building energy systems," Energy, Elsevier, vol. 263(PC).
    12. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    13. Chen, Xiaodong & Ge, Xinxin & Sun, Rongfu & Wang, Fei & Mi, Zengqiang, 2024. "A SVM based demand response capacity prediction model considering internal factors under composite program," Energy, Elsevier, vol. 300(C).
    14. Jonas Sievers & Thomas Blank, 2023. "A Systematic Literature Review on Data-Driven Residential and Industrial Energy Management Systems," Energies, MDPI, vol. 16(4), pages 1-21, February.
    15. Yu, Binbin & Li, Jianjing & Liu, Che & Sun, Bo, 2022. "A novel short-term electrical load forecasting framework with intelligent feature engineering," Applied Energy, Elsevier, vol. 327(C).
    16. Ahmad, Tanveer & Zhang, Dongdong & Huang, Chao, 2021. "Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications," Energy, Elsevier, vol. 231(C).
    17. Wu, Xianguo & Feng, Zongbao & Chen, Hongyu & Qin, Yawei & Zheng, Shiyi & Wang, Lei & Liu, Yang & Skibniewski, Miroslaw J., 2022. "Intelligent optimization framework of near zero energy consumption building performance based on a hybrid machine learning algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Tang, Lingfeng & Xie, Haipeng & Wang, Xiaoyang & Bie, Zhaohong, 2023. "Privacy-preserving knowledge sharing for few-shot building energy prediction: A federated learning approach," Applied Energy, Elsevier, vol. 337(C).
    19. Abdul Mateen Khan & Muhammad Abubakar Tariq & Sardar Kashif Ur Rehman & Talha Saeed & Fahad K. Alqahtani & Mohamed Sherif, 2024. "BIM Integration with XAI Using LIME and MOO for Automated Green Building Energy Performance Analysis," Energies, MDPI, vol. 17(13), pages 1-36, July.
    20. Zhou, Xinlei & Lin, Wenye & Kumar, Ritunesh & Cui, Ping & Ma, Zhenjun, 2022. "A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption," Applied Energy, Elsevier, vol. 306(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.