IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0311089.html
   My bibliography  Save this article

A fact based analysis of decision trees for improving reliability in cloud computing

Author

Listed:
  • Muhammad Asim Shahid
  • Muhammad Mansoor Alam
  • Mazliham Mohd Su’ud

Abstract

The popularity of cloud computing (CC) has increased significantly in recent years due to its cost-effectiveness and simplified resource allocation. Owing to the exponential rise of cloud computing in the past decade, many corporations and businesses have moved to the cloud to ensure accessibility, scalability, and transparency. The proposed research involves comparing the accuracy and fault prediction of five machine learning algorithms: AdaBoostM1, Bagging, Decision Tree (J48), Deep Learning (Dl4jMLP), and Naive Bayes Tree (NB Tree). The results from secondary data analysis indicate that the Central Processing Unit CPU-Mem Multi classifier has the highest accuracy percentage and the least amount of fault prediction. This holds for the Decision Tree (J48) classifier with an accuracy rate of 89.71% for 80/20, 90.28% for 70/30, and 92.82% for 10-fold cross-validation. Additionally, the Hard Disk Drive HDD-Mono classifier has an accuracy rate of 90.35% for 80/20, 92.35% for 70/30, and 90.49% for 10-fold cross-validation. The AdaBoostM1 classifier was found to have the highest accuracy percentage and the least amount of fault prediction for the HDD Multi classifier with an accuracy rate of 93.63% for 80/20, 90.09% for 70/30, and 88.92% for 10-fold cross-validation. Finally, the CPU-Mem Mono classifier has an accuracy rate of 77.87% for 80/20, 77.01% for 70/30, and 77.06% for 10-fold cross-validation. Based on the primary data results, the Naive Bayes Tree (NB Tree) classifier is found to have the highest accuracy rate with less fault prediction of 97.05% for 80/20, 96.09% for 70/30, and 96.78% for 10 folds cross-validation. However, the algorithm complexity is not good, taking 1.01 seconds. On the other hand, the Decision Tree (J48) has the second-highest accuracy rate of 96.78%, 95.95%, and 96.78% for 80/20, 70/30, and 10-fold cross-validation, respectively. J48 also has less fault prediction but with a good algorithm complexity of 0.11 seconds. The difference in accuracy and less fault prediction between NB Tree and J48 is only 0.9%, but the difference in time complexity is 9 seconds. Based on the results, we have decided to make modifications to the Decision Tree (J48) algorithm. This method has been proposed as it offers the highest accuracy and less fault prediction errors, with 97.05% accuracy for the 80/20 split, 96.42% for the 70/30 split, and 97.07% for the 10-fold cross-validation.

Suggested Citation

  • Muhammad Asim Shahid & Muhammad Mansoor Alam & Mazliham Mohd Su’ud, 2024. "A fact based analysis of decision trees for improving reliability in cloud computing," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-53, December.
  • Handle: RePEc:plo:pone00:0311089
    DOI: 10.1371/journal.pone.0311089
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0311089
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0311089&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0311089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:plo:pone00:0134563 is not listed on IDEAS
    2. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Joanna Piotrowska-Woroniak & Tomasz Szul, 2022. "Application of a Model Based on Rough Set Theory (RST) to Estimate the Energy Efficiency of Public Buildings," Energies, MDPI, vol. 15(23), pages 1-13, November.
    3. Ling, Jihong & Zhang, Bingyang & Dai, Na & Xing, Jincheng, 2023. "Coupling input feature construction methods and machine learning algorithms for hourly secondary supply temperature prediction," Energy, Elsevier, vol. 278(C).
    4. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    5. Hu, Rong & Zhou, Kaile & Lu, Xinhui, 2025. "Integrated loads forecasting with absence of crucial factors," Energy, Elsevier, vol. 322(C).
    6. Wu, Xianguo & Feng, Zongbao & Chen, Hongyu & Qin, Yawei & Zheng, Shiyi & Wang, Lei & Liu, Yang & Skibniewski, Miroslaw J., 2022. "Intelligent optimization framework of near zero energy consumption building performance based on a hybrid machine learning algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Zhou, Xinlei & Lin, Wenye & Kumar, Ritunesh & Cui, Ping & Ma, Zhenjun, 2022. "A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption," Applied Energy, Elsevier, vol. 306(PB).
    8. Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
    9. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    10. Xin Xiao & Qian Hu & Huansong Jiao & Yunfeng Wang & Ali Badiei, 2023. "Simulation and Machine Learning Investigation on Thermoregulation Performance of Phase Change Walls," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    11. Haizhou Fang & Hongwei Tan & Ningfang Dai & Zhaohui Liu & Risto Kosonen, 2023. "Hourly Building Energy Consumption Prediction Using a Training Sample Selection Method Based on Key Feature Search," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    12. Maria Kozlovska & Stefan Petkanic & Frantisek Vranay & Dominik Vranay, 2023. "Enhancing Energy Efficiency and Building Performance through BEMS-BIM Integration," Energies, MDPI, vol. 16(17), pages 1-23, August.
    13. Koo, Jabeom & Yoon, Sungmin, 2022. "In-situ sensor virtualization and calibration in building systems," Applied Energy, Elsevier, vol. 325(C).
    14. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Katarzyna Poczeta & Elpiniki I. Papageorgiou, 2022. "Energy Use Forecasting with the Use of a Nested Structure Based on Fuzzy Cognitive Maps and Artificial Neural Networks," Energies, MDPI, vol. 15(20), pages 1-18, October.
    16. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    17. Li, Guannan & Li, Fan & Ahmad, Tanveer & Liu, Jiangyan & Li, Tao & Fang, Xi & Wu, Yubei, 2022. "Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions," Energy, Elsevier, vol. 259(C).
    18. Zhang, Xu & Sun, Yongjun & Gao, Dian-ce & Zou, Wenke & Fu, Jianping & Ma, Xiaowen, 2022. "Similarity-based grouping method for evaluation and optimization of dataset structure in machine-learning based short-term building cooling load prediction without measurable occupancy information," Applied Energy, Elsevier, vol. 327(C).
    19. Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).
    20. Ibrahim Ali Kachalla & Christian Ghiaus, 2024. "Electric Water Boiler Energy Prediction: State-of-the-Art Review of Influencing Factors, Techniques, and Future Directions," Energies, MDPI, vol. 17(2), pages 1-32, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.