IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0303217.html
   My bibliography  Save this article

Developing an ensemble machine learning study: Insights from a multi-center proof-of-concept study

Author

Listed:
  • Annarita Fanizzi
  • Federico Fadda
  • Michele Maddalo
  • Sara Saponaro
  • Leda Lorenzon
  • Leonardo Ubaldi
  • Nicola Lambri
  • Alessia Giuliano
  • Emiliano Loi
  • Michele Signoriello
  • Marco Branchini
  • Gina Belmonte
  • Marco Giannelli
  • Pietro Mancosu
  • Cinzia Talamonti
  • Mauro Iori
  • Sabina Tangaro
  • Michele Avanzo
  • Raffaella Massafra

Abstract

Background: To address the numerous unmeet clinical needs, in recent years several Machine Learning models applied to medical images and clinical data have been introduced and developed. Even when they achieve encouraging results, they lack evolutionary progression, thus perpetuating their status as autonomous entities. We postulated that different algorithms which have been proposed in the literature to address the same diagnostic task, can be aggregated to enhance classification performance. We suggested a proof of concept to define an ensemble approach useful for integrating different algorithms proposed to solve the same clinical task. Methods: The proposed approach was developed starting from a public database consisting of radiomic features extracted from CT images relating to 535 patients suffering from lung cancer. Seven algorithms were trained independently by participants in the AI4MP working group on Artificial Intelligence of the Italian Association of Physics in Medicine to discriminate metastatic from non-metastatic patients. The classification scores generated by these algorithms are used to train SVM classifier. The Explainable Artificial Intelligence approach is applied to the final model. The ensemble model was validated following an 80–20 hold-out and leave-one-out scheme on the training set. Results: Compared to individual algorithms, a more accurate result was achieved. On the independent test the ensemble model achieved an accuracy of 0.78, a F1-score of 0.57 and a log-loss of 0.49. Shapley values representing the contribution of each algorithm to the final classification result of the ensemble model were calculated. This information represents an added value for the end user useful for evaluating the appropriateness of the classification result on a particular case. It also allows us to evaluate on a global level which methodological approaches of the individual algorithms are likely to have the most impact. Conclusion: Our proposal represents an innovative approach useful for integrating different algorithms that populate the literature and which lays the foundations for future evaluations in broader application scenarios.

Suggested Citation

  • Annarita Fanizzi & Federico Fadda & Michele Maddalo & Sara Saponaro & Leda Lorenzon & Leonardo Ubaldi & Nicola Lambri & Alessia Giuliano & Emiliano Loi & Michele Signoriello & Marco Branchini & Gina B, 2024. "Developing an ensemble machine learning study: Insights from a multi-center proof-of-concept study," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-16, September.
  • Handle: RePEc:plo:pone00:0303217
    DOI: 10.1371/journal.pone.0303217
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303217
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0303217&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0303217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    2. Hirad Baradaran Rezaei & Alireza Amjadian & Mohammad Vahid Sebt & Reza Askari & Abolfazl Gharaei, 2023. "An ensemble method of the machine learning to prognosticate the gastric cancer," Annals of Operations Research, Springer, vol. 328(1), pages 151-192, September.
    3. Mukesh Kumar & Saurabh Singhal & Shashi Shekhar & Bhisham Sharma & Gautam Srivastava, 2022. "Optimized Stacking Ensemble Learning Model for Breast Cancer Detection and Classification Using Machine Learning," Sustainability, MDPI, vol. 14(21), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    2. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    5. Li, Li & Li, Han & Panagiotelis, Anastasios, 2025. "Boosting domain-specific models with shrinkage: An application in mortality forecasting," International Journal of Forecasting, Elsevier, vol. 41(1), pages 191-207.
    6. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    7. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    8. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    9. María Adelaida Gómez & Ashton Trey Belew & Deninson Alejandro Vargas & Lina Giraldo-Parra & Neal Alexander & David E. Rebellón-Sánchez & Theresa A. Alexander & Najib M. El-Sayed, 2025. "Innate biosignature of treatment failure in human cutaneous leishmaniasis," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    10. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    11. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    12. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    14. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    15. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.
    16. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    17. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    18. repec:plo:pone00:0185380 is not listed on IDEAS
    19. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    20. Siyu Han & Shixiang Yu & Mengya Shi & Makoto Harada & Jianhong Ge & Jiesheng Lin & Cornelia Prehn & Agnese Petrera & Ying Li & Flora Sam & Giuseppe Matullo & Jerzy Adamski & Karsten Suhre & Christian , 2025. "LEOPARD: missing view completion for multi-timepoint omics data via representation disentanglement and temporal knowledge transfer," Nature Communications, Nature, vol. 16(1), pages 1-20, December.
    21. Natalia Pardo-Lorente & Anestis Gkanogiannis & Luca Cozzuto & Antoni Gañez Zapater & Lorena Espinar & Ritobrata Ghose & Jacqueline Severino & Laura García-López & Rabia Gül Aydin & Laura Martin & Mari, 2024. "Nuclear localization of MTHFD2 is required for correct mitosis progression," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0303217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.