IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0300902.html
   My bibliography  Save this article

In silico model development and optimization of in vitro lung cell population growth

Author

Listed:
  • Amirmahdi Mostofinejad
  • David A Romero
  • Dana Brinson
  • Alba E Marin-Araujo
  • Aimy Bazylak
  • Thomas K Waddell
  • Siba Haykal
  • Golnaz Karoubi
  • Cristina H Amon

Abstract

Tissue engineering predominantly relies on trial and error in vitro and ex vivo experiments to develop protocols and bioreactors to generate functional tissues. As an alternative, in silico methods have the potential to significantly reduce the timelines and costs of experimental programs for tissue engineering. In this paper, we propose a methodology to formulate, select, calibrate, and test mathematical models to predict cell population growth as a function of the biochemical environment and to design optimal experimental protocols for model inference of in silico model parameters. We systematically combine methods from the experimental design, mathematical statistics, and optimization literature to develop unique and explainable mathematical models for cell population dynamics. The proposed methodology is applied to the development of this first published model for a population of the airway-relevant bronchio-alveolar epithelial (BEAS-2B) cell line as a function of the concentration of metabolic-related biochemical substrates. The resulting model is a system of ordinary differential equations that predict the temporal dynamics of BEAS-2B cell populations as a function of the initial seeded cell population and the glucose, oxygen, and lactate concentrations in the growth media, using seven parameters rigorously inferred from optimally designed in vitro experiments.

Suggested Citation

  • Amirmahdi Mostofinejad & David A Romero & Dana Brinson & Alba E Marin-Araujo & Aimy Bazylak & Thomas K Waddell & Siba Haykal & Golnaz Karoubi & Cristina H Amon, 2024. "In silico model development and optimization of in vitro lung cell population growth," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-27, May.
  • Handle: RePEc:plo:pone00:0300902
    DOI: 10.1371/journal.pone.0300902
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0300902
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0300902&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0300902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Saltelli A. & Tarantola S., 2002. "On the Relative Importance of Input Factors in Mathematical Models: Safety Assessment for Nuclear Waste Disposal," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 702-709, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    2. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    3. Tarantola, S. & Gatelli, D. & Mara, T.A., 2006. "Random balance designs for the estimation of first order global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 717-727.
    4. Marta Kuc-Czarnecka & Andrea Saltelli, 2025. "Ranking the rankers. An analysis of science-wide author databases of standardised citation indicators," Scientometrics, Springer;Akadémiai Kiadó, vol. 130(3), pages 1497-1517, March.
    5. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    6. Becker William & Paruolo Paolo & Saltelli Andrea, 2021. "Variable Selection in Regression Models Using Global Sensitivity Analysis," Journal of Time Series Econometrics, De Gruyter, vol. 13(2), pages 187-233, July.
    7. Wu, Qiong-Li & Cournède, Paul-Henry & Mathieu, Amélie, 2012. "An efficient computational method for global sensitivity analysis and its application to tree growth modelling," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 35-43.
    8. Emanuele Borgonovo, 2006. "Measuring Uncertainty Importance: Investigation and Comparison of Alternative Approaches," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1349-1361, October.
    9. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    10. Cui, Lijie & Lu, Zhenzhou & Wang, Pan & Wang, Weihu, 2014. "The ordering importance measure of random variable and its estimation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 105(C), pages 132-143.
    11. Wang, Guangmin & Kockelman, Kara M., . "Local Sensitivity Analysis of Forecast Uncertainty in a Random-Utility-Based Multiregional Input-Output Model," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 55(2).
    12. Hanthanan Arachchilage, Kalpana & Hussaini, Mohammed Yousuff, 2021. "Ranking non-pharmaceutical interventions against Covid-19 global pandemic using global sensitivity analysis—Effect on number of deaths," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Javier Rodrigo-Ilarri & Claudia P. Romero & María-Elena Rodrigo-Clavero, 2020. "Land Use/Land Cover Assessment over Time Using a New Weighted Environmental Index (WEI) Based on an Object-Oriented Model and GIS Data," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    14. Belouda, M. & Jaafar, A. & Sareni, B. & Roboam, X. & Belhadj, J., 2013. "Integrated optimal design and sensitivity analysis of a stand alone wind turbine system with storage for rural electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 616-624.
    15. Delenne, C. & Cappelaere, B. & Guinot, V., 2012. "Uncertainty analysis of river flooding and dam failure risks using local sensitivity computations," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 171-183.
    16. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    17. Plischke, Elmar, 2010. "An effective algorithm for computing global sensitivity indices (EASI)," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 354-360.
    18. Schöbi, Roland & Sudret, Bruno, 2019. "Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 129-141.
    19. E. Borgonovo & L. Peccati, 2011. "Managerial insights from service industry models: a new scenario decomposition method," Annals of Operations Research, Springer, vol. 185(1), pages 161-179, May.
    20. Xu, Chonggang & Gertner, George Zdzislaw, 2008. "A general first-order global sensitivity analysis method," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 1060-1071.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0300902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.