IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0299306.html
   My bibliography  Save this article

Composite estimation to combine spatially overlapping environmental monitoring surveys

Author

Listed:
  • Steven L Garman
  • Cindy L Yu
  • Yuyang Li

Abstract

Long-term environmental monitoring surveys are designed to achieve a desired precision (measured by variance) of resource conditions based on natural variability information. Over time, increases in resource variability and in data use to address issues focused on small areas with limited sample sizes require bolstering of attainable precision. It is often prohibitive to do this by increasing sampling effort. In cases with spatially overlapping monitoring surveys, composite estimation offers a statistical way to obtain a precision-weighted combination of survey estimates to provide improved population estimates (more accurate) with improved precisions (lower variances). We present a composite estimator for overlapping surveys, a summary of compositing procedures, and a case study to illustrate the procedures and benefits of composite estimation. The study uses the two terrestrial monitoring surveys administered by the Bureau of Land Management (BLM) that entirely overlap. Using 2015–18 data and 13 land-health indicators, we obtained and compared survey and composite indicator estimates of percent area meeting land-health standards for sagebrush communities in Wyoming’s Greater Sage-Grouse (Centrocercus urophasianus) Core and NonCore conservation areas on BLM-managed lands. We statistically assessed differences in indicator estimates between the conservation areas using composite estimates and estimates of the two surveys individually. We found composite variance to be about six to 24 units lower than 37% of the survey variances and composite estimates to differ by about six to 10 percentage points from six survey estimates. The composite improvements resulted in finding 11 indicators to statistically differ (p

Suggested Citation

  • Steven L Garman & Cindy L Yu & Yuyang Li, 2024. "Composite estimation to combine spatially overlapping environmental monitoring surveys," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-20, March.
  • Handle: RePEc:plo:pone00:0299306
    DOI: 10.1371/journal.pone.0299306
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299306
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299306&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0299306?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Albert Satorra & Eva Ventura & Alex Costa, 2006. "Improving small area estimation by combining surveys: new perspectives in regional statistics," Economics Working Papers 969, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Stevens, Don L. & Olsen, Anthony R., 2004. "Spatially Balanced Sampling of Natural Resources," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 262-278, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Bąk, 2021. "Spatial sampling methods modified by model use," Statistics in Transition New Series, Polish Statistical Association, vol. 22(2), pages 143-154, June.
    2. Lorenzo Fattorini & Timothy G. Gregoire & Sara Trentini, 2018. "The Use of Calibration Weighting for Variance Estimation Under Systematic Sampling: Applications to Forest Cover Assessment," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 358-373, September.
    3. Pommerening, Arne & Szmyt, Janusz & Zhang, Gongqiao, 2020. "A new nearest-neighbour index for monitoring spatial size diversity: The hyperbolic tangent index," Ecological Modelling, Elsevier, vol. 435(C).
    4. Fulvia Mecatti & Charalambos Sismanidis & Emanuela Furfaro & Pier Luigi Conti, 2023. "Sequential adaptive strategies for sampling rare clustered populations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(5), pages 1659-1693, December.
    5. Anton Grafström & Niklas L. P. Lundström & Lina Schelin, 2012. "Spatially Balanced Sampling through the Pivotal Method," Biometrics, The International Biometric Society, vol. 68(2), pages 514-520, June.
    6. Raphaël Jauslin & Bardia Panahbehagh & Yves Tillé, 2022. "Sequential spatially balanced sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    7. Xin Zhao & Anton Grafström, 2020. "A sample coordination method to monitor totals of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    8. Huan Xie & Fang Wang & Yali Gong & Xiaohua Tong & Yanmin Jin & Ang Zhao & Chao Wei & Xinyi Zhang & Shicheng Liao, 2022. "Spatially Balanced Sampling for Validation of GlobeLand30 Using Landscape Pattern-Based Inclusion Probability," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    9. Linda Altieri & Daniela Cocchi, 2021. "Spatial Sampling for Non‐compact Patterns," International Statistical Review, International Statistical Institute, vol. 89(3), pages 532-549, December.
    10. Sara Franceschi & Rosa Maria Di Biase & Agnese Marcelli & Lorenzo Fattorini, 2022. "Some Empirical Results on Nearest-Neighbour Pseudo-populations for Resampling from Spatial Populations," Stats, MDPI, vol. 5(2), pages 1-16, April.
    11. Matthew Nahorniak & David P Larsen & Carol Volk & Chris E Jordan, 2015. "Using Inverse Probability Bootstrap Sampling to Eliminate Sample Induced Bias in Model Based Analysis of Unequal Probability Samples," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-19, June.
    12. Robertson, Blair & Price, Chris, 2024. "One point per cluster spatially balanced sampling," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    13. Alcasena, Fermín J. & Salis, Michele & Nauslar, Nicholas J. & Aguinaga, A. Eduardo & Vega-García, Cristina, 2016. "Quantifying economic losses from wildfires in black pine afforestations of northern Spain," Forest Policy and Economics, Elsevier, vol. 73(C), pages 153-167.
    14. Kathryn M. Irvine & T. J. Rodhouse & Ilai N. Keren, 2016. "Extending Ordinal Regression with a Latent Zero-Augmented Beta Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(4), pages 619-640, December.
    15. B. L. Robertson & J. A. Brown & T. McDonald & P. Jaksons, 2013. "BAS: Balanced Acceptance Sampling of Natural Resources," Biometrics, The International Biometric Society, vol. 69(3), pages 776-784, September.
    16. Shepherd, Keith D. & Shepherd, Gemma & Walsh, Markus G., 2015. "Land health surveillance and response: A framework for evidence-informed land management," Agricultural Systems, Elsevier, vol. 132(C), pages 93-106.
    17. B. L. Robertson & O. Ozturk & O. Kravchuk & J. A. Brown, 2022. "Spatially Balanced Sampling with Local Ranking," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 622-639, December.
    18. Jacopo Paglia & Jo Eidsvik & Juha Karvanen, 2022. "Efficient spatial designs using Hausdorff distances and Bayesian optimization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1060-1084, September.
    19. Galizia, Luiz Felipe & Alcasena, Fermín & Prata, Gabriel & Rodrigues, Marcos, 2021. "Assessing expected economic losses from wildfires in eucalypt plantations of western Brazil," Forest Policy and Economics, Elsevier, vol. 125(C).
    20. Skinner, C. J., 2015. "Cross-classified sampling: some estimation theory," LSE Research Online Documents on Economics 62261, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0299306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.