IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0296980.html
   My bibliography  Save this article

Product innovation design process combined Kano and TRIZ with AD: Case study

Author

Listed:
  • Hui Rong
  • Wei Liu
  • Jin Li
  • Ziqian Zhou

Abstract

In the era of rapid product iteration, companies need simple and effective methods to guide the entire process of product innovation design and enhance their product innovation capabilities. Most research focused on improving one or several steps in the product design process. Although some scholars have proposed methods that guided the entire process, they combined more than three different theories, which increased the difficulty of theoretical learning and the complexity of practical implementation. This paper proposed a product innovation design process composed of three theoretical methods: Kano, Axiomatic Design (AD), and Theory of the Solution of Inventive Problems (TRIZ). This new process guided the entire product design process with fewer theoretical methods, reducing the difficulty of learning and implementation. The paper demonstrated the effectiveness of this method through the design practice of a portable two-wheeled self-balancing vehicle. Additionally, the discussion section explored the method’s potential from the design management perspective.

Suggested Citation

  • Hui Rong & Wei Liu & Jin Li & Ziqian Zhou, 2024. "Product innovation design process combined Kano and TRIZ with AD: Case study," PLOS ONE, Public Library of Science, vol. 19(3), pages 1-22, March.
  • Handle: RePEc:plo:pone00:0296980
    DOI: 10.1371/journal.pone.0296980
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296980
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296980&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0296980?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nanyi Wang & Chang Shi & Xinhui Kang, 2022. "Design of a Disinfection and Epidemic Prevention Robot Based on Fuzzy QFD and the ARIZ Algorithm," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    2. Tianxiong Wang & Liu Yang, 2023. "Combining GRA with a Fuzzy QFD Model for the New Product Design and Development of Wickerwork Lamps," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    3. Herbert A. Simon, 1996. "The Sciences of the Artificial, 3rd Edition," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262691914, December.
    4. Abdul Zubar Hameed & Jayakrishna Kandasamy & Sakthivel Aravind Raj & Majed Abubakr Baghdadi & Muhammad Atif Shahzad, 2022. "Sustainable Product Development Using FMEA ECQFD TRIZ and Fuzzy TOPSIS," Sustainability, MDPI, vol. 14(21), pages 1-29, November.
    5. Runliang Dou & Yubo Zhang & Guofang Nan, 2017. "Iterative product design through group opinion evolution," International Journal of Production Research, Taylor & Francis Journals, vol. 55(13), pages 3886-3905, July.
    6. Yongchuan Li & Raja Ariffin Raja Ghazilla & Salwa Hanim Abdul-Rashid, 2022. "QFD-Based Research on Sustainable User Experience Optimization Design of Smart Home Products for the Elderly: A Case Study of Smart Refrigerators," IJERPH, MDPI, vol. 19(21), pages 1-22, October.
    7. Prabhat Kumar & Puneet Tandon, 2019. "A paradigm for customer-driven product design approach using extended axiomatic design," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 589-603, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alan Hevner & Isabelle Comyn-Wattiau & Jacky Akoka & Nicolas Prat, 2018. "A pragmatic approach for identifying and managing design science research goals and evaluation criteria," Post-Print hal-02283783, HAL.
    2. Tobias Knabke & Sebastian Olbrich, 2018. "Building novel capabilities to enable business intelligence agility: results from a quantitative study," Information Systems and e-Business Management, Springer, vol. 16(3), pages 493-546, August.
    3. Sunder Shyam, 2011. "Imagined Worlds of Accounting," Accounting, Economics, and Law: A Convivium, De Gruyter, vol. 1(1), pages 1-14, January.
    4. Fiori Stefano, 2005. "The emergence of instructions : some open problems in Hayek's theory," CESMEP Working Papers 200504, University of Turin.
    5. McCown, R. L., 2002. "Changing systems for supporting farmers' decisions: problems, paradigms, and prospects," Agricultural Systems, Elsevier, vol. 74(1), pages 179-220, October.
    6. Jin P. Gerlach & Ronald T. Cenfetelli, 2022. "Overcoming the Single-IS Paradigm in Individual-Level IS Research," Information Systems Research, INFORMS, vol. 33(2), pages 476-488, June.
    7. Basile, Luigi Jesus & Carbonara, Nunzia & Pellegrino, Roberta & Panniello, Umberto, 2023. "Business intelligence in the healthcare industry: The utilization of a data-driven approach to support clinical decision making," Technovation, Elsevier, vol. 120(C).
    8. Loris Gaio, 2005. "A diversity-based approach to requirements tracing in new product development," ROCK Working Papers 031, Department of Computer and Management Sciences, University of Trento, Italy, revised 13 Jun 2008.
    9. B. A. Huberman & N. S. Glance, "undated". "Diversity and Collective Action," Working Papers _001, Xerox Research Park.
    10. Zhewei Zhang & Youngjin Yoo & Kalle Lyytinen & Aron Lindberg, 2021. "The Unknowability of Autonomous Tools and the Liminal Experience of Their Use," Information Systems Research, INFORMS, vol. 32(4), pages 1192-1213, December.
    11. Juval Portugali & Egbert Stolk, 2014. "A SIRN View on Design Thinking—An Urban Design Perspective," Environment and Planning B, , vol. 41(5), pages 829-846, October.
    12. Gilbert Giacomoni & Adel Aloui, 2018. "Imaginaire et imitation du réel : genèse des idées et sciences de l’artificiel," Post-Print hal-01941661, HAL.
    13. Funk, Jeffery, 2009. "Components, systems and discontinuities: The case of magnetic recording and playback equipment," Research Policy, Elsevier, vol. 38(7), pages 1192-1202, September.
    14. Richard Holt & J. Barkley Rosser & David Colander, 2011. "The Complexity Era in Economics," Review of Political Economy, Taylor & Francis Journals, vol. 23(3), pages 357-369.
    15. Fan Zou & Yupeng Li & Jiahuan Huang, 2022. "Group interaction and evolution of customer reviews based on opinion dynamics towards product redesign," Electronic Commerce Research, Springer, vol. 22(4), pages 1131-1151, December.
    16. David Stadelmann & Benno Torgler, 2012. "Bounded Rationality and Voting Decisions Exploring a 160-Year Period," Working Papers 2012.70, Fondazione Eni Enrico Mattei.
    17. Karén Hovhannissian & Marco Valente, 2004. "Modeling Directed Local Search Strategies on Technology Landscapes: Depth and Breadth," ROCK Working Papers 028, Department of Computer and Management Sciences, University of Trento, Italy, revised 17 Jun 2008.
    18. Iana Okhrimenko, 2021. "The Dichotomy of Procedural and Distributive Justice in the Theory of Social Choice," European Research Studies Journal, European Research Studies Journal, vol. 0(2 - Part ), pages 207-226.
    19. Pan Guo & Xiaofeng Li & Yanlin Jia & Xu Zhang, 2020. "Cloud Model-Based Comprehensive Evaluation Method for Entrepreneurs’ Uncertainty Tolerance," Mathematics, MDPI, vol. 8(9), pages 1-14, September.
    20. Francis Marleau Donais & Irène Abi-Zeid & E. Owen D. Waygood & Roxane Lavoie, 2021. "A Framework for Post-Project Evaluation of Multicriteria Decision Aiding Processes from the Stakeholders’ Perspective: Design and Application," Group Decision and Negotiation, Springer, vol. 30(5), pages 1161-1191, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0296980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.