IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0296933.html
   My bibliography  Save this article

Predicting saturated and near-saturated hydraulic conductivity using artificial neural networks and multiple linear regression in calcareous soils

Author

Listed:
  • Hasan Mozaffari
  • Ali Akbar Moosavi
  • Mohammad Amin Nematollahi

Abstract

Hydraulic conductivity (Kψ) is one of the most important soil properties that influences water and chemical movement within the soil and is a vital factor in various management practices, like drainage, irrigation, erosion control, and flood protection. Therefore, it is an essential component in soil monitoring and managerial practices. The importance of Kψ in soil-water relationship, difficulties for its measurement in the field, and its high variability led us to evaluate the potential of stepwise multiple linear regression (SMLR), and multilayer perceptron (MLPNNs) and radial-basis function (RBFNNs) neural networks approaches to predict Kψ at tensions of 15, 10, 5, and 0 cm (K15, K10, K5, and K0, respectively) using easily measurable attributes in calcareous soils. A total of 102 intact (by stainless steel rings) and composite (using spade from 0–20 cm depth) soil samples were collected from different land uses of Fars Province, Iran. The common physico-chemical attributes were determined by the common standard laboratory approaches. Additionally, the mentioned hydraulic attributes were measured using a tension-disc infiltrometer (with a 10 cm radius) in situ. Results revealed that the most of studied soil structure-related parameters (soil organic matter, soluble sodium, sodium adsorption ratio, mean weight diameter of aggregates, pH, and bulk density) are more correlated with K5 and K0 than particle-size distribution-related parameters (sand, silt, and standard deviation and geometric mean diameter of particles size). For K15 and K10, the opposite results were obtained. The applied approaches predicted K15, K10, K5, and K0 with determination coefficient of validation data (R2val) of 0.52 to 0.63 for SMLR; 0.71 to 0.82 for MLPNNs; and 0.58 to 0.78 for RBFNNs. In general, the capability of the applied methods for predicting Kψ at all the applied tensions was ranked as MLPNNs > RBFNNs > SMLR. Although the SMLR method provided easy to use pedotransfer functions for predicting Kψ in calcareous soils, the present study suggests using the MLPNNs approach due to its high capability for generating accurate predictions.

Suggested Citation

  • Hasan Mozaffari & Ali Akbar Moosavi & Mohammad Amin Nematollahi, 2024. "Predicting saturated and near-saturated hydraulic conductivity using artificial neural networks and multiple linear regression in calcareous soils," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-22, January.
  • Handle: RePEc:plo:pone00:0296933
    DOI: 10.1371/journal.pone.0296933
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296933
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296933&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0296933?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elias Hosseini & Mehdi Zarei & Ali Akbar Moosavi & Reza Ghasemi-Fasaei & Majid Baghernejad & Hasan Mozaffari, 2024. "Feasibility of Vis-NIR spectroscopy approach to predict soil biological attributes in arid land soils," PLOS ONE, Public Library of Science, vol. 19(9), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Weifei & Xiao, Changlai & Zhang, Zhihao & Liang, Xiujuan, 2022. "Identification of the formation temperature field of the southern Songliao Basin, China based on a deep belief network," Renewable Energy, Elsevier, vol. 182(C), pages 32-42.
    2. Alexey I. Shinkevich & Tatiana V. Malysheva & Yulia V. Vertakova & Vladimir A. Plotnikov, 2021. "Optimization of Energy Consumption in Chemical Production Based on Descriptive Analytics and Neural Network Modeling," Mathematics, MDPI, vol. 9(4), pages 1-20, February.
    3. Sławomir Francik & Adrian Knapczyk & Artur Knapczyk & Renata Francik, 2020. "Decision Support System for the Production of Miscanthus and Willow Briquettes," Energies, MDPI, vol. 13(6), pages 1-24, March.
    4. Sławomir Francik & Bogusława Łapczyńska-Kordon & Norbert Pedryc & Wojciech Szewczyk & Renata Francik & Zbigniew Ślipek, 2022. "The Use of Artificial Neural Networks for Determining Values of Selected Strength Parameters of Miscanthus × Giganteus," Sustainability, MDPI, vol. 14(5), pages 1-26, March.
    5. Mohd. Ahmed & Saeed AlQadhi & Javed Mallick & Nabil Ben Kahla & Hoang Anh Le & Chander Kumar Singh & Hoang Thi Hang, 2022. "Artificial Neural Networks for Sustainable Development of the Construction Industry," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    6. Ali, Mumtaz & Prasad, Ramendra & Jamei, Mehdi & Malik, Anurag & Xiang, Yong & Abdulla, Shahab & Deo, Ravinesh C. & Farooque, Aitazaz A. & Labban, Abdulhaleem H., 2024. "Short-term wave power forecasting with hybrid multivariate variational mode decomposition model integrated with cascaded feedforward neural networks," Renewable Energy, Elsevier, vol. 221(C).
    7. Re Cecconi, F. & Moretti, N. & Tagliabue, L.C., 2019. "Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 266-277.
    8. Jiang, Wei & Wang, Teng & Yuan, Dongdong & Sha, Aimin & Zhang, Shuo & Zhang, Yufei & Xiao, Jingjing & Xing, Chengwei, 2024. "Available solar resources and photovoltaic system planning strategy for highway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    9. Şenol, Halil & Ali Dereli̇, Mehmet & Özbilgin, Ferdi, 2021. "Investigation of the distribution of bovine manure-based biomethane potential using an artificial neural network in Turkey to 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Rahman, Abidur & Farrok, Omar & Haque, Md Mejbaul, 2022. "Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0296933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.