Author
Listed:
- Elias Hosseini
- Mehdi Zarei
- Ali Akbar Moosavi
- Reza Ghasemi-Fasaei
- Majid Baghernejad
- Hasan Mozaffari
Abstract
Visible and near-infrared (Vis-NIR) reflectance spectroscopy has recently emerged as an efficient and cost-effective tool for monitoring soil parameters and provides an extensive array of measurements swiftly. This study sought to predict fundamental biological attributes of calcareous soils using spectral reflectance data in the Vis-NIR range through the application of partial least square regression (PLSR) and stepwise multiple linear regression (SMLR) techniques. The objective was to derive spectrotransfer functions (STFs) to predict selected soil biological attributes. A total of 97 composite samples were collected from three distinct agricultural land uses, i.e., sugarcane, wheat, and date palm, in the Khuzestan Province, Iran. The samples were analyzed using both standard laboratory analysis and proximal sensing approach within the Vis-NIR range (400–2500 nm). Biological status was evaluated by determining soil enzyme activities linked to nutrient cycling including acid phosphatase (ACP), alkaline phosphatase (ALP), dehydrogenase (DEH), soil microbial respiration (SMR), microbial biomass phosphorus (Pmic), and microbial biomass carbon (Cmic). The results indicated that the developed PLSR models exhibited superior predictive performance in most biological parameters compared to the STFs, although the differences were not significant. Specifically, the STFs acceptably accurately predicted ACP, ALP, DEH, SMR, Pmic, and Cmic with R2val (val = validation dataset) values of 0.68, 0.67, 0.65, 0.65, 0.76, and 0.72, respectively. These findings confirm the potential of Vis-NIR spectroscopy and the effectiveness of the associated STFs as a rapid and reliable technique for assessing biological soil quality. Overall, in the context of predicting soil properties using spectroscopy-based approaches, emphasis must be placed on developing straightforward, easily deployable, and pragmatic STFs.
Suggested Citation
Elias Hosseini & Mehdi Zarei & Ali Akbar Moosavi & Reza Ghasemi-Fasaei & Majid Baghernejad & Hasan Mozaffari, 2024.
"Feasibility of Vis-NIR spectroscopy approach to predict soil biological attributes in arid land soils,"
PLOS ONE, Public Library of Science, vol. 19(9), pages 1-21, September.
Handle:
RePEc:plo:pone00:0311122
DOI: 10.1371/journal.pone.0311122
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0311122. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.