IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0296506.html
   My bibliography  Save this article

Reservoir parameters prediction based on spatially transferred long short-term memory network

Author

Listed:
  • Wancheng Huang
  • Yuan Tian

Abstract

Reservoir reconstruction, where parameter prediction plays a key role, constitutes an extremely important part in oil and gas reservoir exploration. With the mature development of artificial intelligence, parameter prediction methods are gradually shifting from previous petrophysical models to deep learning models, which bring about obvious improvements in terms of accuracy and efficiency. However, it is difficult to achieve large amount of data acquisition required for deep learning due to the cost of detection, technical difficulties, and the limitations of complex geological parameters. To address the data shortage problem, a transfer learning prediction model based on long short-term memory neural networks has been proposed, and the model structure has been determined by parameter search and optimization methods in this paper. The proposed approach transfers knowledge from historical data to enhance new well prediction by sharing some parameters in the neural network structure. Moreover, the practicality and effectiveness of this method was tested by comparison based on two block datasets. The results showed that this method could significantly improve the prediction accuracy of the reservoir parameters in the event of data shortage.

Suggested Citation

  • Wancheng Huang & Yuan Tian, 2024. "Reservoir parameters prediction based on spatially transferred long short-term memory network," PLOS ONE, Public Library of Science, vol. 19(1), pages 1-21, January.
  • Handle: RePEc:plo:pone00:0296506
    DOI: 10.1371/journal.pone.0296506
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0296506
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0296506&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0296506?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chang, Che-Jung & Li, Der-Chiang & Huang, Yi-Hsiang & Chen, Chien-Chih, 2015. "A novel gray forecasting model based on the box plot for small manufacturing data sets," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 400-408.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zheng-Xin & Jv, Yue-Qi, 2021. "A non-linear systematic grey model for forecasting the industrial economy-energy-environment system," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    2. Liu, Jintao & Chen, Liangchao & Xu, Wei & Feng, Mingfei & Han, Yongming & Xia, Tao & Geng, Zhiqiang, 2023. "Novel production prediction model of gasoline production processes for energy saving and economic increasing based on AM-GRU integrating the UMAP algorithm," Energy, Elsevier, vol. 262(PB).
    3. He, Yan-Lin & Wang, Ping-Jiang & Zhang, Ming-Qing & Zhu, Qun-Xiong & Xu, Yuan, 2018. "A novel and effective nonlinear interpolation virtual sample generation method for enhancing energy prediction and analysis on small data problem: A case study of Ethylene industry," Energy, Elsevier, vol. 147(C), pages 418-427.
    4. Kuang, Bing & Lu, Xinhai & Zhou, Min & Chen, Danling, 2020. "Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    5. Ma, Xuejiao & Wang, Yong & Wang, Chen, 2017. "Low-carbon development of China's thermal power industry based on an international comparison: Review, analysis and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 942-970.
    6. Yi-Chung Hu & Peng Jiang, 2017. "Forecasting energy demand using neural-network-based grey residual modification models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 556-565, May.
    7. Liu, Xiaomei & Xie, Naiming, 2019. "A nonlinear grey forecasting model with double shape parameters and its application," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 203-212.
    8. Yuan, Meng & Zhang, Haoran & Wang, Bohong & Huang, Liqiao & Fang, Kai & Liang, Yongtu, 2020. "Downstream oil supply security in China: Policy implications from quantifying the impact of oil import disruption," Energy Policy, Elsevier, vol. 136(C).
    9. Zhang, Xu & Sun, Yongjun & Gao, Dian-ce & Zou, Wenke & Fu, Jianping & Ma, Xiaowen, 2022. "Similarity-based grouping method for evaluation and optimization of dataset structure in machine-learning based short-term building cooling load prediction without measurable occupancy information," Applied Energy, Elsevier, vol. 327(C).
    10. Zeng, Bo & Li, Chuan, 2016. "Forecasting the natural gas demand in China using a self-adapting intelligent grey model," Energy, Elsevier, vol. 112(C), pages 810-825.
    11. Fengli Zhang & Chen Li & Yajie Yu & Dana M. Johnson, 2019. "Resources and Future Availability of Agricultural Biomass for Energy Use in Beijing," Energies, MDPI, vol. 12(10), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0296506. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.