IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0292523.html
   My bibliography  Save this article

Trends and driving forces of agricultural carbon emissions: A case study of Anhui, China

Author

Listed:
  • Yanwei Qi
  • Huailiang Liu
  • Jianbo Zhao
  • Shanzhuang Zhang
  • Xiaojin Zhang
  • Weili Zhang
  • Yakai Wang
  • Jiajun Xu
  • Jie Li
  • Yulan Ding

Abstract

To facilitate accurate prediction and empirical research on regional agricultural carbon emissions, this paper uses the LLE-PSO-XGBoost carbon emission model, which combines the Local Linear Embedding (LLE), Particle Swarm Algorithm (PSO) and Extreme Gradient Boosting Algorithm (XGBoost), to forecast regional agricultural carbon emissions in Anhui Province under different scenarios. The results show that the regional agricultural carbon emissions in Anhui Province generally show an upward and then downward trend during 2000–2021, and the regional agricultural carbon emissions in Anhui Province in 2030 are expected to fluctuate between 11,342,100 tones and 14,445,700 tones under five different set scenarios. The projections of regional agricultural carbon emissions can play an important role in supporting the development of local regional agriculture, helping to guide the input and policy guidance of local rural low-carbon agriculture and promoting the development of rural areas towards a resource-saving and environment-friendly society.

Suggested Citation

  • Yanwei Qi & Huailiang Liu & Jianbo Zhao & Shanzhuang Zhang & Xiaojin Zhang & Weili Zhang & Yakai Wang & Jiajun Xu & Jie Li & Yulan Ding, 2024. "Trends and driving forces of agricultural carbon emissions: A case study of Anhui, China," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-15, February.
  • Handle: RePEc:plo:pone00:0292523
    DOI: 10.1371/journal.pone.0292523
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0292523
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0292523&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0292523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Bowei & Shen, Yueqin, 2021. "Effects of land transfer quality on the application of organic fertilizer by large-scale farmers in China," Land Use Policy, Elsevier, vol. 100(C).
    2. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    3. Jiang, Qingquan & Khattak, Shoukat Iqbal & Rahman, Zia Ur, 2021. "Measuring the simultaneous effects of electricity consumption and production on carbon dioxide emissions (CO2e) in China: New evidence from an EKC-based assessment," Energy, Elsevier, vol. 229(C).
    4. Wu, Huijun & Yuan, Zengwei & Geng, Yong & Ren, Jingzheng & Jiang, Songyan & Sheng, Hu & Gao, Liangmin, 2017. "Temporal trends and spatial patterns of energy use efficiency and greenhouse gas emissions in crop production of Anhui Province, China," Energy, Elsevier, vol. 133(C), pages 955-968.
    5. Chao Hu & Jin Fan & Jian Chen, 2022. "Spatial and Temporal Characteristics and Drivers of Agricultural Carbon Emissions in Jiangsu Province, China," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    2. Shulong Li & Zhizhang Wang, 2023. "Time, Spatial and Component Characteristics of Agricultural Carbon Emissions of China," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    3. Atif Jahanger & Ashar Awan & Ahsan Anwar & Tomiwa Sunday Adebayo, 2023. "Greening the Brazil, Russia, India, China and South Africa (BRICS) economies: Assessing the impact of electricity consumption, natural resources, and renewable energy on environmental footprint," Natural Resources Forum, Blackwell Publishing, vol. 47(3), pages 484-503, August.
    4. Yikun Zhang & Yongsheng Wang, 2024. "Water–Energy–Food Nexus in the Yellow River Basin of China under the Influence of Multiple Policies," Land, MDPI, vol. 13(9), pages 1-20, August.
    5. Jiaguo Liu & Hui Meng & Haonan Xu & Jihong Chen, 2025. "Economic–environmental coordination and influencing factors under dual-carbon goal: a spatial empirical evidence from China’s transport sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(1), pages 531-569, January.
    6. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    7. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    8. Lili Guo & Yuting Song & Mengqian Tang & Jinyang Tang & Bright Senyo Dogbe & Mengying Su & Houjian Li, 2022. "Assessing the Relationship among Land Transfer, Fertilizer Usage, and PM 2.5 Pollution: Evidence from Rural China," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    9. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Huanyu Chang & Bing Zhang & Jingyan Han & Yong Zhao & Yongqiang Cao & Jiaqi Yao & Linrui Shi, 2024. "Evaluation of the Coupling Coordination and Sustainable Development of Water–Energy–Land–Food System on a 40-Year Scale: A Case Study of Hebei, China," Land, MDPI, vol. 13(7), pages 1-21, July.
    11. Daniele Martini & Pietro Bezzini & Michela Longo, 2024. "Environmental Impact of Electrification on Local Public Transport: Preliminary Study," Energies, MDPI, vol. 17(23), pages 1-23, November.
    12. Zhenfen Wu & Zhe Wang & Qiliang Yang & Changyun Li, 2024. "Prediction Model of Electric Power Carbon Emissions Based on Extended System Dynamics," Energies, MDPI, vol. 17(2), pages 1-22, January.
    13. Zigao He, 2023. "The Water–Energy–Carbon Coupling Coordination Level in China," Sustainability, MDPI, vol. 16(1), pages 1-15, December.
    14. Liang Li & Ying Xiang & Xinyue Fan & Qinxiang Wang & Yang Wei, 2023. "Spatiotemporal Characteristics of Agricultural Production Efficiency in Sichuan Province from the Perspective of “Water–Land–Energy–Carbon” Coupling," Sustainability, MDPI, vol. 15(21), pages 1-21, October.
    15. Yong Liu & Jixin Yang & Guanghong Zhang & Xufeng Cui, 2024. "Driving factors of green production behaviour among farmers of different scales: Evidence from North China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 70(10), pages 474-494.
    16. Chen, Changhua & Luo, Yuqing & Zou, Hong & Huang, Junbing, 2023. "Understanding the driving factors and finding the pathway to mitigating carbon emissions in China's Yangtze River Delta region," Energy, Elsevier, vol. 278(PB).
    17. Zhou, Chenyu & Shen, Yun & Wu, Haixin & Wang, Jianhong, 2022. "Using fractional discrete Verhulst model to forecast Fujian's electricity consumption in China," Energy, Elsevier, vol. 255(C).
    18. Shah, Syed Ale Raza & Zhang, Qianxiao & Abbas, Jaffar & Balsalobre-Lorente, Daniel & Pilař, Ladislav, 2023. "Technology, Urbanization and Natural Gas Supply Matter for Carbon Neutrality: A New Evidence of Environmental Sustainability under the Prism of COP26," Resources Policy, Elsevier, vol. 82(C).
    19. Qiangyi Li & Xiaohui Zhang, 2024. "Effects of Agricultural Trade on Reducing Carbon Emissions under the “Dual Carbon” Target: Evidence from China," Agriculture, MDPI, vol. 14(8), pages 1-25, August.
    20. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0292523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.