IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0288339.html
   My bibliography  Save this article

Comparing the diagnostic performance of ordinary, mixed, and lasso logistic regression models at identifying opioid and cannabinoid poisoning in U.S. dogs using pet demographic and clinical data reported to an animal poison control center (2005–2014)

Author

Listed:
  • Mohammad Howard-Azzeh
  • David L Pearl
  • Terri L O’Sullivan
  • Olaf Berke

Abstract

Researchers have begun studying the impact of human opioid and cannabinoid use on dog populations. These studies have used data from an animal poison control center (APCC) and there are concerns that due to the illicit nature and social stigma concerning the use of these drugs, owners may not always be forthcoming with veterinarians or APCC staff regarding pet exposures to these toxicants. As a result, models derived from APCC data that examine the predictability of opioid and cannabinoid dog poisonings using pet demographic and health disorder information may help veterinarians or APCC staff more reliably identify these toxicants when examining or responding to a call concerning a dog poisoned by an unknown toxicant. The fitting of epidemiologically informed statistical models has been useful for identifying factors associated with various health conditions and as predictive tools. However, machine learning, including lasso regression, has many useful features as predictive tools, including the ability to incorporate large numbers of independent variables. Consequently, the objectives of our study were: 1) identify pet demographic and health disorders associated with opioid and cannabinoid dog poisonings using ordinary and mixed logistic regression models; and 2) compare the predictive performance of these models to analogous lasso logistic regression models. Data were obtained from reports of dog poisoning events collected by the American Society for the Prevention of Cruelty to Animals’ (ASPCA) Animal Poisoning Control Center, from 2005–2014. We used ordinary and mixed logistic regression models as well as lasso logistic regression models with and without controlling for autocorrelation at the state level to train our models on half the dataset and test their predictive performance on the remainder. Although epidemiologically informed logistic regression models may require substantial knowledge of the disease systems being investigated, they had the same predictive abilities as lasso logistic regression models. All models had relatively high predictive parameters except for positive predictive values, due to the rare nature of calls concerning opioid and cannabinoid poisonings. Ordinary and mixed logistic regression models were also substantially more parsimonious than their lasso equivalents while still allowing for the epidemiological interpretation of model coefficients. Controlling for autocorrelation had little effect on the predictive performance of all models, but it did reduce the number of variables included in lasso models. Several disorder variables were associated with opioid and cannabinoid calls that were consistent with the acute effects of these toxicants. These models may help build diagnostic evidence concerning dog exposure to opioids and cannabinoids, saving time and resources when investigating these cases.

Suggested Citation

  • Mohammad Howard-Azzeh & David L Pearl & Terri L O’Sullivan & Olaf Berke, 2023. "Comparing the diagnostic performance of ordinary, mixed, and lasso logistic regression models at identifying opioid and cannabinoid poisoning in U.S. dogs using pet demographic and clinical data repor," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-22, July.
  • Handle: RePEc:plo:pone00:0288339
    DOI: 10.1371/journal.pone.0288339
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288339
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288339&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0288339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chatterjee, A. & Lahiri, S. N., 2011. "Bootstrapping Lasso Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 608-625.
    2. Jenny W Sun & Jessica M Franklin & Kathryn Rough & Rishi J Desai & Sonia Hernández-Díaz & Krista F Huybrechts & Brian T Bateman, 2020. "Predicting overdose among individuals prescribed opioids using routinely collected healthcare utilization data," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-17, October.
    3. Ronald L. Wasserstein & Allen L. Schirm & Nicole A. Lazar, 2019. "Moving to a World Beyond “p," The American Statistician, Taylor & Francis Journals, vol. 73(S1), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria-Lavinia FLOREA & Anca BORZA, 2019. "Individual Strategies For Achieving Work-Life Balance €“ A Case Study On Romanian Workers," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 13(1), pages 845-855, November.
    2. Grüner Sven, 2020. "Sample Size Calculation in Economic Experiments," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 240(6), pages 791-823, December.
    3. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    4. Audrino, Francesco & Camponovo, Lorenzo, 2013. "Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models," Economics Working Paper Series 1327, University of St. Gallen, School of Economics and Political Science.
    5. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    6. Michaelides, Michael, 2021. "Large sample size bias in empirical finance," Finance Research Letters, Elsevier, vol. 41(C).
    7. Kelter, Riko, 2022. "Power analysis and type I and type II error rates of Bayesian nonparametric two-sample tests for location-shifts based on the Bayes factor under Cauchy priors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    8. Paap, Richard & Franses, Philip Hans, 2025. "Shrinkage estimators for periodic autoregressions," Journal of Econometrics, Elsevier, vol. 247(C).
    9. John Cawley & Alex Susskind & Barton Willage, 2020. "The Impact of Information Disclosure on Consumer Behavior: Evidence from a Randomized Field Experiment of Calorie Labels on Restaurant Menus," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(4), pages 1020-1042, September.
    10. Xingcai Zhou & Zhaoyang Jing & Chao Huang, 2024. "Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression," Mathematics, MDPI, vol. 12(5), pages 1-53, February.
    11. Jason Moran & Norodin Vali & Anders Sand & Marco Beato & Raouf Hammami & Rodrigo Ramirez-Campillo & Helmi Chaabene & Gavin Sandercock, 2024. "Effect of vertical, horizontal, and combined plyometric training on jump, sprint and change of direction performance in male soccer players," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-12, May.
    12. Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2020. "Global-Local Mixtures: A Unifying Framework," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 426-447, August.
    13. Abbas, Sadia & Adapa, Sujana & Sheridan, Alison & Azeem, Muhammad Masood, 2022. "Informal competition and firm level innovation in South Asia: The moderating role of innovation time off and R&D intensity," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    14. Pete Leasure & Hunter M. Boehme, 2024. "An Experimental Investigation Examining the Impact of Medical Association Statements about Drug Addiction on Perceptions of Criminal Culpability and Punishment," Social Sciences, MDPI, vol. 13(7), pages 1-8, July.
    15. Bir Doj Rai & Tenzin Tenzin & Dorji Tshering & Narapati Dahal & Gizachew A Tessema & Lin Fritschi & Sylvester Nyadanu Dodzi & Gavin Pereira, 2025. "Knowledge, attitude, and practice of One Health and zoonotic diseases among multisectoral collaborators in Bhutan: Results from a nationwide survey," PLOS Global Public Health, Public Library of Science, vol. 5(1), pages 1-20, January.
    16. Matthias Breuer & Ed Dehaan, 2024. "Using and Interpreting Fixed Effects Models," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 62(4), pages 1183-1226, September.
    17. Simon Berset & Martin Huber & Mark Schelker, 2023. "The fiscal response to revenue shocks," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 30(3), pages 814-848, June.
    18. Ertefaie Ashkan & Asgharian Masoud & Stephens David A., 2018. "Variable Selection in Causal Inference using a Simultaneous Penalization Method," Journal of Causal Inference, De Gruyter, vol. 6(1), pages 1-16, March.
    19. Jordan Adamson & Lucas Rentschler, 2023. "Criminal justice from a public choice perspective: an introduction to the special issue," Public Choice, Springer, vol. 196(3), pages 223-227, September.
    20. Markku Maula & Wouter Stam, 2020. "Enhancing Rigor in Quantitative Entrepreneurship Research," Entrepreneurship Theory and Practice, , vol. 44(6), pages 1059-1090, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0288339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.