IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0288071.html
   My bibliography  Save this article

Improved GWO and its application in parameter optimization of Elman neural network

Author

Listed:
  • Wei Liu
  • Jiayang Sun
  • Guangwei Liu
  • Saiou Fu
  • Mengyuan Liu
  • Yixin Zhu
  • Qi Gao

Abstract

Traditional neural networks used gradient descent methods to train the network structure, which cannot handle complex optimization problems. We proposed an improved grey wolf optimizer (SGWO) to explore a better network structure. GWO was improved by using circle population initialization, information interaction mechanism and adaptive position update to enhance the search performance of the algorithm. SGWO was applied to optimize Elman network structure, and a new prediction method (SGWO-Elman) was proposed. The convergence of SGWO was analyzed by mathematical theory, and the optimization ability of SGWO and the prediction performance of SGWO-Elman were examined using comparative experiments. The results show: (1) the global convergence probability of SGWO was 1, and its process was a finite homogeneous Markov chain with an absorption state; (2) SGWO not only has better optimization performance when solving complex functions of different dimensions, but also when applied to Elman for parameter optimization, SGWO can significantly optimize the network structure and SGWO-Elman has accurate prediction performance.

Suggested Citation

  • Wei Liu & Jiayang Sun & Guangwei Liu & Saiou Fu & Mengyuan Liu & Yixin Zhu & Qi Gao, 2023. "Improved GWO and its application in parameter optimization of Elman neural network," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-44, July.
  • Handle: RePEc:plo:pone00:0288071
    DOI: 10.1371/journal.pone.0288071
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0288071
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0288071&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0288071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Youzhuang Sun & Junhua Zhang & Zhengjun Yu & Zhen Liu & Pengbo Yin, 2022. "WOA (Whale Optimization Algorithm) Optimizes Elman Neural Network Model to Predict Porosity Value in Well Logging Curve," Energies, MDPI, vol. 15(12), pages 1-14, June.
    2. Wei Liu & Zhiqing Guo & Feng Jiang & Guangwei Liu & Dong Wang & Zishun Ni, 2022. "Improved WOA and its application in feature selection," PLOS ONE, Public Library of Science, vol. 17(5), pages 1-33, May.
    3. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Jicheng Liu & Yu Yin, 2022. "Power Load Forecasting Considering Climate Factors Based on IPSO-Elman Method in China," Energies, MDPI, vol. 15(3), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández, Juan & Chiachío, Juan & Barros, José & Chiachío, Manuel & Kulkarni, Chetan S., 2024. "Physics-guided recurrent neural network trained with approximate Bayesian computation: A case study on structural response prognostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Chen, Jiaxian & Li, Dongpeng & Huang, Ruyi & Chen, Zhuyun & Li, Weihua, 2023. "Aero-engine remaining useful life prediction method with self-adaptive multimodal data fusion and cluster-ensemble transfer regression," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Barui, Sandip & Mitra, Debanjan & Balakrishnan, Narayanaswamy, 2024. "Flexible modelling of a bivariate degradation process with a shared frailty and an application to fatigue crack data," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Wu, Shengnan & Hu, Yiming & Zhang, Laibin & Liu, Shujie & Xie, Renjun & Yin, Zhiming, 2024. "Intelligent risk identification for drilling lost circulation incidents using data-driven machine learning," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Xu, Dongxin & Pan, Yongjun & Zhang, Xiaoxi & Dai, Wei & Liu, Binghe & Shuai, Qi, 2024. "Data-driven modelling and evaluation of a battery-pack system’s mechanical safety against bottom cone impact," Energy, Elsevier, vol. 290(C).
    6. Zhang, Xiaoxi & Pan, Yongjun & Zhou, Junxiao & Li, Zhixiong & Liao, Tianjun & Li, Jie, 2024. "Forward and reverse design of adhesive in batteries via dynamics and machine learning algorithms for enhanced mechanical safety," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. Saidjon Shiralievich Tavarov & Alexander Sidorov & Zsolt Čonka & Murodbek Safaraliev & Pavel Matrenin & Mihail Senyuk & Svetlana Beryozkina & Inga Zicmane, 2023. "Control of Operational Modes of an Urban Distribution Grid under Conditions of Uncertainty," Energies, MDPI, vol. 16(8), pages 1-18, April.
    8. Dong, Yutong & Jiang, Hongkai & Yao, Renhe & Mu, Mingzhe & Yang, Qiao, 2024. "Rolling bearing intelligent fault diagnosis towards variable speed and imbalanced samples using multiscale dynamic supervised contrast learning," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Qin, Zhiyuan & Naser, M.Z., 2023. "Machine learning and model driven bayesian uncertainty quantification in suspended nonstructural systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Zhihe Yang & Jiandun Li & Haitao Wang & Chang Liu, 2025. "An Informer Model for Very Short-Term Power Load Forecasting," Energies, MDPI, vol. 18(5), pages 1-16, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0288071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.